""

Влажность бетона допустимое значение

Интересные и нужные сведения о строительных материалах и технологиях

Влияние влажности бетона на его прочность

Снижение прочности бетона на 20— 50% с ростом влажности (см. рис. 1) происходит, по мнению большинства исследователей [1], в соответствии с механизмом адсорбционного понижения прочности, предложенным для твердых тел в работе [2].

В первой публикации по этому вопросу (1947 г.) понижение прочности связывалось с двумерным давлением кономолекулярного слоя адсорбированного вещества, которое развивает клинозидные микрошели при постоянстве внешних усилий [2]. Согласно одной из последних публикаций (1979 г.), атомы жидкой среды, обладающие миграгтонной подвижностью, проникают в точу микрошели, компенсируют сбнажаются связи, что вызывает рост трещины. Для полного проявления эффекта необходимы небольшие массы здеорованного вешества — достаточно моноодоя на поверхности главной трещины [2]. Наглядно это положение представлено в работе [1]: прочность цементного камня снижается только до насыщения монослоя воды.

Однако прочность бетона [3], цементного камня и раствора непрерывно уменьшается с ростом влажности среды не только от 0 до 20%, когда формируется монослой воды на внутренней поверхности цементного камня, включающей и поверхность трещин [4], т и от 20 до 100%. Емкость моно-слоя соответствует следующим значениям влажности исходного и пропитанного цементного камня и раствора; 117=3.5. 2 и 2,5% (рис. 2). Монослой воды вызывает менее : половины полного снижения прочности (см. рис. 1). В связи с этим можно допустить, что снижение прочности бетона : под действием воды не охватывается ; целиком механизмом адсорбционного понижения прочности. Один из возможных механизмов основан на модели цементного камня, предложенной нами ранее [4]. Цементный камень в первом приближении можно рассматривать как пористый сросток слоистых пластинчатых кристаллов гидросилнкатов кальция, обозначаемых С—S—Н цементного камня. Срастание кристаллов в сросток, т. с. образование фазовых кристаллизационных контактов между ними, происходит в результате взаимодействия катионов кальция (Са2+) с отрицательно заряженными поверхностными атомами кислорода (О) двух соседних кристаллов, т. е. благодаря мсжкристаллическим связям О—Са—О (рис. 3). Применяя к этой модели цементного камня представления о структурных уровнях [5], можно рассмотреть носителей прочности бетона на различных структурных уровнях: бетон—>-раствор->-цементный камень-т-гидратнрованная масса->-сро- стки кристаллов С—S—Н-т-межкристаллические контакты О—Са—0- межкристаллическне связи О—Са—О. При таком подходе снижение прочности бетона под действием воды возникает вследствие ослабления межкристаллических связей О—Са—О.



С увеличением числа молекул воды, координированных межкристаллическими катионами Са24 до максимального значения, равного 7, прочность мсжкристаллпческих связей О—Са—О снижается, а длина растет (см. рис. 3; рис. 4). Это происходит постепенно при подъеме влажности среды от 0 до 100% [4]. Координация молекул воды атомами кальция и снижение прочности связи обратимы: при снижении влажности среды от 100 до 0% число молекул воды уменьшается от 7 до 0, а прочность связи растет (см. рис. 3 и 4).

Зависимости прочности бетона [3], раствора и цементного камня от их влажности, полученные из эксперимента (см. рис. 1), и зависимость прочности межкристаллпческой связи О—Са—О от числа координированных катионом кальция молекул воды, рассчитанная по правилу Полинга (см. рис. 4), аналогичны: прочность снижается непрерывно по мере повышения влажности материала и с ростом числа молекул воды. Прочность снижается нелинейно — в основном в области низких влажностей материала и малых чисел молекул воды, в обоих случаях снижение прочности имеет предел и оно обратимо. Хорошее качественное согласие свидетельствует в пользу того, что предлагаемые представления достаточно верно выражают физическую природу снижения прочности бетона с ростом влажности.

ГОСТ «Бетоны. Метод определения влажности»

СНИП/Бетоны. Метод определения влажности

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР ГОСТ 12730.2—78.

БЕТОНЫ

Метод определения влажности

Дата введения 01.01.80

Настоящий стандарт распространяется на все виды бетонов и устанавливает метод определения влажности путем испытания образцов.

1. ОБЩИЕ ТРЕБОВАНИЯ1.1. Общие требования к методу определения влажности бетонов — по ГОСТ 12730.0.

2. АППАРАТУРА И РЕАКТИВЫ

2.1. Для проведения испытания применяют:

  • весы лабораторные по ГОСТ 24104;
  • шкаф сушильный по ГОСТ 13474;
  • эксикатор по ГОСТ 25336;
  • противни;
  • хлористый кальций по ГОСТ 450.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

3.1. Влажность бетона определяют испытанием образцов или проб, полученных дроблением образцов после их испытания на прочность или извлеченных из готовых изделий или конструкций.

3.2. Наибольшая крупность раздробленных кусков бетона должна быть:

для тяжелых бетонов и бетонов на пористых заполнителях — не более максимального размера зерен заполнителей;

? для мелкозернистых бетонов (включая ячеистые и силикатные) — не более 5 мм.

3.3. Из раздробленного материала путем квартования отбирают усредненную пробу массой не менее:

1000 г — для тяжелых бетонов и бетонов на пористых заполнителях;

100 г — для ячеистых, силикатных и мелкозернистых бетонов.

При производственном контроле влажности бетона в бетонных и железобетонных изделиях допускается проводить испытания проб бетона меньшей массы в соответствии с требованиями стандартов на эти изделия.

3.4. Дробят и взвешивают образцы или пробы сразу же после отбора или хранят в паронепроницаемой упаковке или герметичной таре, объем которой превышает объем уложенных в нее образцов не более чем в два раза.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. Подготовленные пробы или образцы взвешивают, ставят в сушильный шкаф и высушивают до постоянной массы при температуре (105 ± 5) °С.

Постоянной считают массу пробы (образца), при которой результаты двух последовательных взвешиваний отличаются не более чем на 0,1 %. При этом время между взвешиваниями должно быть не менее 4 ч.

4.2. Перед повторным взвешиванием пробы (образцы) охлаждают в эксикаторе с безводным хлористым кальцием или вместе с сушильным шкафом до комнатной температуры.

4.3. Взвешивание производят с погрешностью до 0,01 г.

4.4. Собранную влажность тяжелого бетона, бетона на пористых заполнителях и силикатного бетона определяют по методике ГОСТ 12852.6.

При этом массу пробы тяжелого бетона и бетона на пористых заполнителях в зависимости от наибольшего размера зерен заполнителя принимают по таблице.

Читать еще:  Двухкамерный септик из бетонных колец

Наибольший размер зерна заполнителя, мм Масса пробы, г 20 и менее 100,40 , 200,Более 40 500.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Влажность бетона пробы (образца) по массе Wм в процентах вычисляют с погрешностью до 0,1 % по формуле

где mв — масса пробы (образца) бетона до сушки, г;

mс — масса пробы (образца) бетона после сушки, г.

5.2. Влажность бетона пробы (образца) по объему Wo в процентах вычисляют с погрешностью до 0,1 % по формуле

где rо — плотность сухого бетона, определенная по ГОСТ 12730.1, г/см3;

rв — плотность воды, принимаемая равной 1 г/см3.

5.3. Влажность бетона серии проб (образцов) определяют как среднее арифметическое результатов определения влажности отдельных проб (образцов) бетона.

5.4. В журнале, в который заносят результаты испытаний, должны быть предусмотрены следующие графы:

  • маркировка образцов;
  • место и время отбора проб;
  • влажностное состояние бетона;
  • возраст бетона и дата испытаний;
  • влажность бетона проб (образцов) и серий по массе;
  • влажность бетона проб (образцов) и серий по объему.

Государственным комитетом СССР по делам строительства

Министерством промышленности строительных материалов СССР

Министерством энергетики и электрификации СССР

М. И. Бруссер, канд. техн. наук (руководитель темы); Л. А. Малинина, д-р. техн. наук; А. Т. Баранов, канд. техн. наук; Г. А. Бужевич, канд. техн. наук; Л. И. Карпикова, канд. техн. наук; Т. А. Ухова, канд. техн. наук; Ю. А. Саввина, канд. техн. наук; Ю. А. Белов; В. Л. Рубецкой; Н. В. Мякошин; В. Г. Довжик, канд. техн. наук; В. А. Пискарев, канд. техн. наук; Г. Я. Амханицкий, канд. техн. наук; С. Н. Левин, канд. техн. наук; Е. Н. Леонтьев, канд. техн. наук; В. Н. Тарасова, канд. техн. наук; Л. И. Левин; В. А. Дорф, канд. техн. наук; Ю. Г. Хаютин, канд, техн. наук; В. Б. Судаков, канд. техн. наук; Ц. Г. Гинзбург, канд. техн. наук; Р. Е. Литвинова, канд. хим. наук; А. Г. Малиновский

ВНЕСЕН Государственным комитетом СССР по делам строительства

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 22.12.78 № 242

3. ВЗАМЕН ГОСТ 12852.2—77, ГОСТ 11050—64 в части определения влажности

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка Номер пункта

ГОСТ 450—77
ГОСТ 12730.0—78
ГОСТ 12730.1—78
ГОСТ 12852.6—77
ГОСТ 24104—88
ГОСТ 25336—82
ГОСТ 16.0.801.397—87

Показатель влажности бетона

Для мониторинга состояния лучше всего использовать измеритель влажности.

Чтобы получить смесь, используются такие ингредиенты, как цементы выбранной марки, щебень либо гравий, песок и вода. При этом свойства получаемого бетона во многом зависят не только от того, какая марка цемента используется, но и от температуры, количества воды, добавляемой в раствор. Именно вода делает массу пластичной, превращая ее в монолитный раствор, обладающий всеми требуемыми свойствами.

Поэтому влажность – это один из важнейших показателей, на который необходимо обращать внимание. От него будет зависеть прочность, устойчивость материала, его возможность выдерживать самые различные нагрузки, скорость высыхания и многое другое.

Нормы по показателям

Условия возникновения и компоненты кислотно-щелочной реакции в бетоне.

Влажность определяется согласно принятым нормативам, которые разделяют качество материала для производственных, жилых и прочих строений, работ, ограждений. Сегодня приняты такие нормы по содержанию влаги, как:

  • 13% – для общественных и жилых зданий, бытовых строений, промышленных сооружений;
  • 15% – для жилых строений, промышленных зданий, если в состав входит перлитовый песок либо зола;
  • 18% – только для производственных зданий.

При отпуске уже готовых изделий влажность не должна превышать 25%, если раствор замешивался на основе песка, и не больше 35%, если раствор замешивался на основе золы, отходов производства для ячеистых бетонов.

Баланс влажности раствора

Баланс влажности – это один из важнейших показателей, который оказывает особое влияние на характеристики массы.

От содержания влаги зависит прочность материала, его возможность связывать компоненты смеси в единое, монолитное целое.

Но в любом случае важно соблюдать баланс. Если в бетон добавить много влаги, то цемент уже не сможет связать в одно целое все составляющие раствора, то есть смесь получится слишком жидкой, некачественной.

Если воды добавить меньше, чем положено, то такой бетон застынет быстро, но станет хрупким, ингредиенты будут рассыпаться, им просто нечем будет крепиться между собой. То есть использовать массу уже будет нельзя, а это влечет за собой дополнительные расходы. Именно поэтому рекомендуется вносить воду в смесь в строго отведенном количестве, как и все остальные компоненты.

Так сколько воды необходимо добавлять в бетон при его приготовлении? Ответить однозначно на этот вопрос нельзя, так как и остальные компоненты массы также содержат определенный уровень влажности. Для каждого состава такой процент надо рассчитывать индивидуально, зависит он от многих обстоятельств.

Для приготовления раствора лучше всего использовать бетоносмесители.

От правильного определения влажности зависит не только прочность, но и долговечность. Это возможность оказывать эффективное сопротивление всем негативным внешним условиям, которые стараются разрушить материал. Рассмотрим те влияния, которые оказывает вода на характеристики.

Одним из основных требований является долговечность. Именно этот показатель говорит о том, насколько бетон сопротивляется резким перепадам температуры, карбонизации, сколько циклов оттаивания выдерживает. Большое влияние оказывает подбор правильной пропорции смеси, который рассчитывается исходя из того, какие характеристики необходимы, какая марка цемента будет использоваться, от фракции и состава песка, гравия и прочих наполнителей.

Любой бетон замешивается при использовании воды, которая необходима для процесса гидратирования. Это дает возможность делать смесь пластичной, схватываться, облегчать укладку на месте. Но необходимо помнить, что нехватка воды сказывается на соединении компонентов, а излишек становится причиной образования пустот после застывания. То есть количество воды необходимо сводить к минимуму, но таким образом, чтобы прочность материала при этом не страдала.

Излишки влаги в составе приводят к тому, что при процессе замерзания-оттаивания на поверхности массы появляются сколы, выбоины, трещины. А это дополнительные пути для газа, жидкостей, что способствует снижению его прочности.

Читать еще:  Бетонный сайдинг для фасада

Причины проникновения влаги

Бетон изготовленный по всем правилам не будет впитывать влагу.

Причин проникновения излишков влаги в массу очень много, но основной является неправильное соблюдение пропорций при замешивании, невыдерживание условий и сроков высыхания, схватывания массы. Часто, чтобы снизить расходы на замешивание цемента, используют увеличение количества воды, но в итоге это приводит только к тому, что после монтажа блоков и деталей из бетона влага снаружи получает множество возможностей к проникновению внутрь. То есть в данном случае влага, скорее, враг, чем союзник.

Недостаток воды при замешивании, как уже было отмечено ранее, приводит к тому, что после высыхания ингредиенты смеси плохо соединяются между собой, оставляя для влаги снаружи множество путей к легкому проникновению внутрь массы. Какое решение? Строгое соблюдение пропорций при производстве.

Пропорции воды

Правильное соотношение цемента, песка и бетона.

Чтобы приготовить бетон, необходима влага, без нее никак не получится качественная монолитная смесь. Важно, чтобы вода, применяемая для этого, была чистой, не имела никаких посторонних примесей, была нужной температуры.

Чтобы цемент вступил в реакцию, необходимо брать воду, масса которой составляет 1/4 от общей массы используемого цемента. Чтобы приготовить качественную смесь, количество жидкости должно быть намного больше, примерно 40-70% от общей массы цемента, только в этом случае раствор получится пластичным. У той воды, которая не вступает в реакцию с цементом, то есть того количества, которое превышает значение в одну четвертую часть, есть два пути:

  • испарение, при котором образовываются многочисленные воздушные поры;
  • излишки влаги могут оставаться в массе в виде капилляров, водяных пор.

Оба этих пути ослабляют прочность получившегося бетона, поэтому количество воды надо по возможности уменьшать. Для этого рекомендуемые параметры должны составлять такое значение: масса влаги для замешивания должна быть вдвое меньше общей массы используемого цемента. Но при этом необходимо учитывать то, для каких целей используется раствор. Для строительства применяется водоцементное соотношение в 0,6-0,5, для тротуарной плитки – 0,4, для сооружения фундамента – 0,75.

Влажностный баланс – это важнейший фактор, который необходим для замешивания качественного раствора и его дальнейшего эффективного использования. Именно от того, сколько воды применялось для замеса, какова общая влажность материала после высыхания, зависит прочность, долговечность и прочие характеристики. При этом пропорции смеси будут зависеть от многочисленных условий, включающих в себя марку цемента, назначение смеси.

Плотность, влажность, водопоглощение и пористость бетона

Эти свойства характеризуют физические характеристики и особенности структуры бетона. Они определяются по ГОСТ 12730-78.

Средняя плотность бетона характеризует его массу в единице объема с учетом пор и пустот. Массу бетона при определении плотности измеряют с погрешностью не более 0,1 %, объем — не более 1 %.

Плотность бетона определяют как на образцах (ГОСТ 12730.1 — 78), так и непосредственно в конструкциях. Наиболее распространены методы определения средней плотности бетона на образцах, которые могут находиться в состоянии естественной влажности или в сухом, воздушно-сухом, нормально-влажностном и водонасыщенном состоянии. Образцы изготавливают и испытывают сериями. В состав серии входит три образца.

При определении плотности бетона в состоянии естественной влажности образцы испытывают сразу же после их изготовления, или сохраняют в паронепроницаемой упаковке или герметичной таре, объем которой превышает объем образцов не более чем в два раза.

Для определения средней плотности бетона в сухом состоянии образцы высушивают до постоянной массы в электрошкафу при температуре (105±10) °С. Высушивание считается оконченным, если разница между двумя последовательными взвешиваниями в процессе высушивания не превышает 1 г.

Для определения средней плотности бетона в воздушно-сухом состоянии образцы перед испытанием выдерживают не менее 28 сут в помещении при температуре (25±10) °С и относительной влажности воздуха (60±10) %.

При определении средней плотности бетона в нормальных влажностных условиях образцы сохраняют 28 сут в камере нормального твердения, эксикаторе или другой герметической таре при относительной влажности воздуха не менее 95% и температуре (20±2) °С.

При определении средней плотности бетона в водонасыщенном состоянии образцы насыщают водой. С этой целью их помещают в сосуд, наполненной водой, с таким расчетом, чтобы уровень воды в нем был выше верхнего уровня образцов приблизительно на 50 мм. Через каждые 24 час нахождения в воде образцы взвешивают на лабораторных весах или весах для гидростатического взвешивания до тех пор, пока результаты двух последующих взвешиваний будут отличаться не более чем на 0,1%.

Образцы для испытания могут иметь как правильную, так и неправильную геометрическую форму. Их изготавливают из бетонной смеси рабочего состава или выпиливают (выбуривают, выламывают) из изделий и конструкций.

Среднюю плотность бетонов на пористых заполнителях и ячеистых бетонов при производственном контроле определяют испытанием образцов правильной геометрической формы, предназначенных для определения прочности бетона. Номинальные размеры образцов правильной геометрической формы, методы их изготовления должны соответствовать требованиям ГОСТ 10180-90. Объем образцов правильной формы вычисляют по их геометрическим размерам.

Наименьший объем образцов неправильной формы зависит от размера фракции крупного заполнителя, мм: более 5 до 20 — 1,от 20 до 40 — 3, от 40 до 80 — 8 дм 3 . Объем образцов неправильной формы определяют при помощи объемомера (рис. 2.6) или гидростатическим взвешиванием (рис. 2.7). Образцы бетона до испытания высушивают до постоянной массы, нагревают в сушильном шкафу до температуры 60°С и покрывают парафином, нагретым до 100°С. Парафин образует тонкую пленку, заполняя открытые каверны, раковины и поры на поверхности образцов. При применении объемомера (рис. 2.6) его заполняют водой и рассчитывают объем вытесненной парафированным образцом Ve воды по формуле:

где гп/ — масса пустого сосуда, г; т2 масса сосуда с водой, вытесненной образцом, г; рв — плотность воды, рв = 1 г/см 3 .

Объем образца (Vo) на гидростатических весах определяют взвешиванием его на воздухе и в воде и рассчитывают по формуле

где тнас масса насыщенного водой образца, определенная обычным взвешиванием, г; т’нас — масса насыщенного водой образца, определенная взвешиванием в воде, г; тс — масса высушенного образца, г; тп — масса парафинированного образца, г; рв — плотность воды, (pe= 1 г/см 3 ); р п — плотность парафина, п = 0,93 г/см 3 ).

Читать еще:  Въезд в гараж своими руками

Среднюю плотность бетона pw образца с влажностью в момент испытания Wm определяют с погрешность до 1 кг/м 3 по формуле

где т — масса образца, кг; V— объем образца, м 3 .

Для серии образцов среднюю плотность бетона определяют как среднее арифметическое значение результатов испытания всех образцов, входящих в серию.

Среднюю плотность бетона в нормированном влажностном состоянии определяют по формуле

Рис. 2.6. Схема объемомера: 1 — сосуд; 2 — трубка; 3 — сосуд для сбора воды

Рис. 2.7. Схема гидростатического взвешивания: 1 — сосуд с водой; 2 — подвес для образца; 3 — образец; 4 — весы; 5 — гиря

где рн нормированная средняя плотность бетона, кг/м 3 ; pw средняя плотность бетона при влажности Wm, кг/м 3 ; WH нормированная влажность бетона, %; Wm влажность бетона в момент испытания.

Плотность бетона непосредственно в изделиях и конструкциях измеряют радиоизотопным методом (ГОСТ 17623-87). Он основан на зависимости между плотностью материала и характеристиками ослабления или рассеяния гамма-излучения. Существующие радиоизотопные приборы позволяют определять плотность бетона в диапазоне 600 — 2500 кг/м 3 .

О газобетоне

Автоклавный газобетон (по терминологии ячеистый бетон автоклавного твердения) представляет собой искусственный камень, состоящий из множества (порядка 75-85%) заполненных воздухом равномерно распределенных пор. Благодаря пористой структуре газобетон обладает низкой плотностью и теплопроводностью. Автоклавная обработка позволяет получить стабильные во времени физико-механические свойства материала.

Ячеистый бетон харакрезуется следующими основными физико-механическими характеристиками, оказывающих влияние на эксплуатационные свойства изделий и построенных из них ограждающих конструкций:

  • марка средней плотности бетона определяется объемом заполненных воздухом пор, чем меньше плотность бетона, тем больше пор он содержит и наоботор. И как следствие, чем ниже плотность газобетона, тем выше его теплоизоляционные свойства. Плотность газобетона измеряется в кг/м 3 . Обозначается латинской буквой D.
  • класс бетона по прочности на сжатие численно равен гарантированной прочности бетона в МПа, с обеспеченностью 0,95. При этом необходимо учитывать коэффициент необходимой прочности бетона, зависящий от партионного (внутрисерийного) коэффициента вариации прочности бетона конкретного производителя. Прочность бетона в первую очередь зависит от рецептуры его изготовления, степени помола исходного сырья, режимов автоклавирования и т.д. И только при прочих равных условиях прочность газобетона зависит от его плотности. Фактическая прочность газобетона измеряется в МПа или кгс/см 2 . Класс прочности обозначается латинской буквой В.
  • марка морозостойкости — показатель качества бетона, характеризующий способность сохранять физико-механические свойства при многократном воздействии попеременного замораживания на воздухе и оттаивания над водой. Численно равна установленному испытаниями количеству циклов попеременного замораживания и оттаивания. Обозначается латинской буквой F.

Именно эти вышеперечисленные характеристики каждый производитель обязан подтверждать сертификатом соответствия на свою продукцию, а также указывать в паспорте качества поставляемых изделий и на маркировочной этикетке поддона. Кроме основных показателей, ячеистый бетон характеризуется такими свойствами, как:

  • усадка при высыхании — показатель качества бетона, характеризующий деформационные свойства материала, или его способность изменять свой объем без воздействия внешних нагрузок из-за влагообменных процессов между бетоном и окружающей средой. Согласно требований строительной нормативной базы Украины усадка автоклавного газобетонане не должна превышать 0,5 мм/п.м. кладки. Для сравнения, для неавтоклавных пенобетонов этот показатель не должен превышать 3,0 мм/п.м. кладки.
  • модуль упругости — показатель качества бетона, характеризующий деформационные свойства материала, или его способность изменять свой объем под действием внешней нагрузки. Определяется начальным модулем упругости Ев, который измеряется в МПа или кгс/см 2 . Чем выше плотность и класс бетона по прочности на сжатие, тем больше начальный модуль упругости.
  • паропроницаемость — показатель качества бетона, характеризующий способность материала пропускать или задерживать водяной пар. Паропроницаемость ячеистого бетона при прочих равных условиях зависит от плотности — чем ниже плотность, тем выше паропроницаемость. Паропроницаемость оценивается коэффициентом паропроницаемости μ, который измеряется в мг/(м•ч•Па).
  • теплопроводность — показатель качества бетона, характеризующий способность материала передавать тепло от одной своей части к другой в силу теплового движения молекул. Теплопроводность ячеистого бетона в основном зависит от его плотности и влажности — чем ниже плотность и влажность, тем ниже теплопроводность. Теплопроводность оценивается коэффициентом теплопроводности λ, который измеряется Вт/м•К. В теплотехнических расчетах используют расчетные значения коэффициентов теплопроводности ячеистого бетона, определенные при равновесной эксплуатационной влажности.
  • теплоемкость — показатель качества бетона, характеризующий способность материала аккумулировать тепловую энергию. Оценивается удельной теплоёмкостью С0, которая измеряется в Дж/(кг•К). Удельная теплоемкость ячеистого бетона в сухом состоянии составляет 0,84 кДж/(кг•К). В условиях эксплуатации при влажности 4–5% теплоемкость газобетона составляет 1 – 1,1 кДж/(кг•К).
  • сорбционная влажность — показатель качества бетона, характеризующий способность материала поглощать пары воды из окружающей среды. Этот показатель зависит от плотности ячеистого бетона и величины относительной влажности воздуха в помещении. Для плотности 400-500 кг/м3 сорбционная влажность газобетона при относительной влажности воздуха 60% составляет около 4%, при относительной влажности 80% — порядка 5-6%, при относительной влажности 100% — порядка 13-15% по массе.
  • эксплуатационная (равновесная) влажность — установившаяся влажность в толще ограждающей конструкции из автоклавного газобетона на протяжении двух лет эксплуатации здания. Этот показатель определяется сорбционной влажностью материала и, в первую очередь, зависит от относительной влажности воздуха внутри эксплуатируемого помещения, а также от паропроницаемости наружной отделки стены. Для сухого, нормального и влажного режима эксплуатации помещения равновесная влажность газобетона составляет 4% по массе, для мокрых помещений — 6% по массе. Именно эта влажность и учитывается при теплотехническом расчете ограждающих конструкций из газобетона.
  • отпускная влажность — влажность ячеистого бетона после его изготовления. Этот показатель не влияет на равновесную влажность газобетона и учитывается при подсчете транспортного веса готовой продукции. Как правило, этот показатель индивидуален для конкретного производителя и в среднем составляет порядка 25-35% по массе бетона.
Ссылка на основную публикацию
"
×
×
"
Adblock
detector