""

Содержание

Подогрев бетона проводом ПНСВ

Обогрев бетона нагревательными проводами: подробный обзор технологии

Среди различных методик, которые применяются при закладке фундаментов и других строительных работах в зимний период, важное место занимает подогрев бетона проводом ПНСВ. Использование данной технологии с соблюдением всех правил позволяет создать оптимальные условия для набора прочности застывающим цементным раствором даже в том случае, если температура окружающей среды падает значительно ниже нуля.

В нашей статье мы опишем, как организовать такую обработку, как выбрать провод для нагрева бетона, а также – на что нужно обязательно обращать внимание при работе системы.

Проводники в опалубке нагревают раствор для эффективного отвердения

Обзор методик

Для обеспечения правильного отвердевания бетона нужно, чтобы весь входящий в состав раствора цемент прореагировал с водой. Этот процесс называется гидратацией, и нарушается он в том случае, если вся влага или ее часть превращается в лед.

Чтобы избежать этого, используют различные методы:

  • Во-первых, при небольшом объеме работ можно добавить в состав раствора компоненты, предотвращающие замерзание. Минусом данной методики является неспособность подобных присадок противостоять сильным морозам, а также удорожание стоимости работ.
  • Во-вторых, при кратковременном похолодании можно просто обеспечить качественную теплоизоляцию залитого фундамента или другой несущей конструкции. При этом используется опалубка, изготовленная из материалов с низкой теплопроводностью, а сверху бетон накрывается многослойным полиэтиленом или рубероидом.

Обратите внимание! Разновидностью данного метода является так называемый «горячий термос» — перед заливкой в опалубку бетон нагревается до 60-70 0 С, после чего тщательно изолируется.

  • Для активного прогрева часто используется электродный метод. При этом проводники либо погружаются в толщу раствора, либо располагаются на его поверхности. Электрическое поле, формирующееся между токопроводящими пластинами или стержнями, отдает часть энергии бетону, поддерживая его температуру на высоком уровне.
  • Однако наиболее эффективной и практичной методикой является использование специальных нагревательных кабелей. Они закладываются в толщу бетона, после чего подключаются к специальному трансформатору и нагревают материал. Цена проводников относительно невелика, потому данный метод можно рекомендовать и для больших объемов.

Заливать бетон зимой можно только при условии прогрева

Как показывает практика, наиболее действенным является комбинирование методов пассивного теплосбережения и активного прогрева бетона. Ниже мы рассмотрим детали этого процесса максимально подробно.

Технология кабельного прогрева

Общая схема

При работе в температурных условиях, достигающих — 40 0 , провод для подогрева бетона является чуть ли не единственным возможным вариантом для обеспечения отвердения цемента.

При этом сам процесс обогрева организуется таким образом:

  • Вначале не объекте монтируется опалубка. Для снижения теплопотерь ее лучше делать из изолирующих материалов.
  • Затем в опалубку устанавливается арматурный каркас. К арматурному каркасу крепятся специальные нагревательные провода.

Все проводники соединяются в единую систему

  • Длины проводов подбирают с таким расчетом, чтобы обеспечить максимально равномерную нагрузку на каждый участок. Все фрагменты соединяют с одной токопроводящей шиной, которая размещается за пределами опалубки.
  • Затем выполняется заливка раствора с его последующим уплотнением. При этом виброобработка цементной массы допускается, поскольку она, в отличие от штыкования, не приводит к повреждению проводников.
  • Далее соединительные шины присоединяются к понижающему трансформатору. В систему подается ток, и провода постепенно нагреваются, препятствуя замерзанию жидкости в толще материала.
  • Работа трансформатора не прекращается до тех пор, пока бетон не наберет нужную прочность.

Трансформатор для подачи напряжения

Физика процессов

Что же происходит в это время в толще раствора?

  • При прохождении тока заданной силы и напряжения проволока для прогрева бетона постепенно увеличивает свою температуру за счет значительного сопротивления.
  • Часть температуры передается окружающей среде, и вода не переходит в твердое состояние, оставаясь доступной для гидратации цемента.
  • Также за счет отсутствия ледяных кристаллов в толще бетона не формируются поры, которые делают материал неоднородным и снижают его прочность.

От проложенных проводов тепло передается раствору

  • Дополнительным плюсом такого обогрева является повышение надежности армирования: во-первых, за счет постепенного уменьшения доступной влаги снижается риск коррозии арматуры, а во-вторых, бетон закрепляется на металлическом каркасе более равномерно.

Обратите внимание! Резка железобетона алмазными кругами позволяет убедиться в эффективности данной методики: материал становится более прочным, и не поддается качественной обработке другими средствами.

  • После достижения бетоном определенных эксплуатационных показателей нагрев прекращают. Инструкция рекомендует понижать температуру постепенно, поскольку только в этом случае можно избежать растрескивания внутри материала.

Собственно, именно так и происходит сам процесс.

Если же вы решите организовать кабельный обогрев бетона своими руками, то настоятельно рекомендуем изучить следующий раздел. Естественно, нужно помнить, что для выполнения данных работ следует обладать соответствующим допуском, так что для тех, у кого нет «корочки» электрика, приведенные ниже рекомендации будут носить ознакомительный характер.

Методика организации работ

Выбор проводников

Поскольку нагревательный провод для бетона является центральным элементом всей системы, его нужно выбирать очень придирчиво.

Здесь справедливыми будут следующие соображения:

  • В качестве основного греющего проводника лучше всего подойдет провод ПНСВ с толщиной жилы 1,2 или 1,4 мм.

Обратите внимание! В некоторых случаях, а именно при обогреве больших конструкций, допускается монтаж системы из кабеля ПНСВ диаметром 2, 2,5 или даже 3 мм.

  • Стальная жила, выступающая токонесущим элементом, может быть оцинкована – это положительно сказывается на эффективности нагрева, а также на надежности системы.

Оцинкованный кабель ПНСВ в полихлорвиниловой изоляции

  • Для обеспечения эффективной теплопередачи, а также исключения риска поражения электрическим током стальной сердечник кабеля ПНСВ должен быть покрыт полихлорвиниловой или полиэтиленовой изоляцией.
  • Не следует использовать кабель с полиэтиленовой защитой в армированных конструкциях: при скачках напряжения или длительной работе с максимальной нагрузкой существует риск оплавления полиэтилена и замыкания провода на арматуру.
  • В то же время полихлорвинил при низких температурах (-10 0 С и менее) вследствие снижения эластичности становится ломким, и потому может потрескаться еще на этапе монтажа.
  • Расход провода ПНСВ 1,2 составляет примерно 50 погонных метров на кубометр раствора.

При использовании кабелей необходимо помнить, что рабочий ток для проводника, находящегося в толще раствора, составляет около 15 Ампер. При этом на воздухе такая сила тока является избыточно большой, и чаще всего приводит к перегоранию проводника за счет недостаточно эффективного теплоотведения.

Кабель АПВ-4 для холодных концов

Чтобы избежать этого, для соединения находящихся в бетоне проводников с трансформатором или общей шиной используют так называемые «холодные концы» — провода большего сечения, менее подверженные температурным нагрузкам. В качестве «холодного конца» обычно используется метровый отрезок кабеля АПВ-4, соединенный с ПНСВ скруткой с х/б изолентой.

Схема укладки

Монтаж проводников может осуществляться по одной из двух схем.

Ниже мы опишем детали обустройства каждой из них:

  • Провод для обогрева бетона нарезаем равными отрезками (чаще всего это 17 или 28 метров) и свиваем в спирали диаметром около 40 мм, формируя так называемые нитки. Для завивки спиралей чаще всего применяется специальный станок с электроприводом.
  • При соединении по схеме «треугольник» все проводники делятся на три равные группы. Провода в группах соединяем между собой параллельно, после чего группы скрепляем в трех точках. От каждой точки подводим кабель к выходному зажиму трансформатора.
  • Несколько иначе распределяются нитки проводов при соединении «звездой». Каждые три нитки соединяем в один узел, формируя «тройку». Все тройки соединяем между собой, и, как и в первом случае, присоединяем к трансформатору.
  • Разобраться в топологии данных схем помогут изображения, которые приводятся в данном разделе.

Принципиальные схемы подключения

Чтобы облегчить расчет проводов для прогрева бетонного раствора, можно использовать специальные программы-калькуляторы. Также несколько примеров для наиболее распространенных ситуаций приведены в таблице:

Монтаж прогревающей системы

Сам процесс монтажа системы довольно прост:

  • Вначале возводим опалубку и закладываем в нее арматурный каркас. Советы по обустройству опалубки приведены выше.
  • Затем нарезаем кабель ПНСВ в соответствии с необходимыми объемами и формируем из него спирали для нагрева.

Фото закладки спиралей ПНСВ в опалубку

  • Далее укладываем кабель таким образом, чтобы между соседними проводниками расстояние составляло не менее 15 см.
  • При формировании изгиба следим, чтобы проводники не переламывались, и не нарушалась целостность изоляционного слоя. Рекомендуемый радиус изгиба составляет не менее 25 мм.
  • Присоединяем провода к арматурному каркасу таким образом, чтобы избежать их смещения при заливке и виброуплотнении раствора.

Еще одна методика размещения и фиксации ПНСВ на арматуре

  • Выводные концы соединяем в группы в соответствии с выбранной схемой монтажа (см. выше). Зачищаем края проводников и присоединяем их к «холодным концам» путем скручивания, тщательно изолируя место контакта.
  • Холодные концы присоединяем к понижающей трансформаторной станции. Рекомендуется использовать установки СПБ-40, ТМОБ-63, КТПТО-80 или их аналогов.

Присоединение проводов к трансформатору

Обратите внимание! Пробные пуски нагревательной системы до заливки бетона не допускаются, поскольку это с высокой вероятностью приведет к перегоранию проводников на воздухе.

  • Для контроля температуры закладываем специальные трубки, которые будут играть роль диагностических скважин.
  • Выполняем заливку и виброуплотнение цементного раствора, контролируя положение и целостность проводников.

Для снижения расходов электроэнергии на прогрев бетона до заданной температуры специалисты рекомендуют перекрыть залитый фундамент фольгированной пленкой. Слой металлического напыления будет играть роль теплового экрана, отражая инфракрасное излучение и способствуя еще большему укреплению поверхностного слоя.

Рекомендации по эксплуатации

Сам процесс прогрева реализуется по трехстадийной схеме:

  • Сразу после заливки дается некоторое время (до двух часов) на первичное схватывание. После этого материал накрывается теплоизоляционной пленкой и выполняется пуск трансформаторной установки.
  • Первый этап носит название предварительного прогрева. Температура раствора постепенно повышается до 70 – 80 0 С (в зависимости от проекта). При этом во избежание формирования зон напряжений в бетоне параметры тока меняются постепенно – так, чтобы нагрев составлял не более 10 0 С в час.
  • Далее идет наиболее длительная вторая стадия, на которой происходит изотермическое прогревание цементной массы. При этом в скважинах контролируется температурный режим: нагрев не должен превышать 80 0 С, иначе может начаться спекание цементных гранул.
  • Обработка производится до тех пор, пока материал не наберет 70% прочности от заложенной в проекте. Прочность может определяться либо расчетным путем, либо с помощью специальных тестов (иногда для отбора проб применяется алмазное бурение отверстий в бетоне).
  • Третья стадия — охлаждение. Параметры тока изменяются таким образом, чтобы температура бетона падала не быстрее, чем на 4-5 0 С в час.

Рабочая схема подключения нагревательных элементов

После завершения данной стадии «холодные концы» отключаются от трансформатора и демонтируются. Дальнейший набор прочности проходит в естественных условиях.

Сведения о том, как прогреть бетон проводом ПНСВ, будут незаменимы для всех, кто планирует строить дом в зимний период. Конечно, система эта довольно затрата, но когда выбора особо нет – то лучше использовать наиболее эффективную и доступную технологию прогрева бетона.

Читать еще:  Смесь для заделки трещин в бетоне

В любом случае, приведенные выше советы, а также видео в этой статье содержат весьма ценную для мастера информацию, потому стоит уделить время ее пристальному изучению!

Прогрев бетона зимой: электроды, КТПО, провод ПНСВ, технология

Схватывание бетона происходит при участии воды. Но в зимнее время вся влага в растворе замерзает, делая гидратацию невозможной. Чтобы и в морозы не приостанавливать строительство, на участке организовывают обогрев бетона. Вариантов прогрева разработано немало, и каждая технология находит свое применение.

На чем основывается выбор?

Каким способом подогревать зимой бетонные конструкции, зависит от ряда параметров:

1. Погодные условия. При температуре не ниже -15 °С обогрев нагревательными проводами можно заменить методом «теплой» опалубки.

2. Класс бетона – от него зависит необходимый срок теплового воздействия до получения надежных характеристик конструкций, залитых зимой. Бетон вплоть до класса В10 должен успеть набрать половину заявленной прочности, прежде чем можно будет закончить прогрев, классы с В12,5 по В25 – около 40%, крепче В25 – около 30%.

3. Размеры ЖБИ. Для массивных фундаментов рекомендуется электропрогрев бетона электродами или проводами ПНСВ, плюс сохранение набранной температуры «термосом».

4. Толщина заливки. При незначительных габаритах отдельных элементов армированной конструкции возможно применение индукционного нагрева.

Чтобы получить монолит заданного качества и оптимизировать затраты на обогрев бетона, рекомендуется для каждого конкретного случая комбинировать различные технологии.

Метод электродов

Наиболее часто применяемая технология, основанная на свойстве проводников электрического тока разогреваться. Влажный бетонный раствор тоже превращается в своеобразный проводник, если в нем разместить запитанные электроды. Чтобы «цепь» заработала, их необходимо подсоединить к разным фазам источника переменного тока мощностью 60-127 В.

Не используйте метод под напряжением свыше 127 В, если работаете с ЖБИ. Бетон с металлической арматурой включать в цепь можно только после профессиональной разработки проекта.

Технология прогрева бетона электродами требует предварительных расчетов для каждой конструкции. От ее особенностей будет зависеть напряжение подаваемого переменного тока, схема расстановки электродов и даже их вид.

  • Стержневые электроды – металлические пруты небольшого диаметра (от 6 до 12 мм). Используются на удаленных участках особо крупных конструкций, а также для сложных форм (стыков, колонн). При размещении стержневых электродов нужно следить, чтобы они не располагались к опалубке ближе, чем на 3 см.
  • Струнные – длинная стальная проволока диаметром 6-10 мм. Предназначены для участков большой протяженности. Этот способ предпочтителен, если прогрев бетонной смеси электродами выполняется при контакте заливки с уже замерзшим грунтом.
  • Поверхностные – особый тип электродов, роль которых выполняют стальные пластины или полосы шириной в 4-8 см. Проводники крепятся непосредственно к опалубке с оставлением одного свободного конца для подключения к источнику питания. В отличие от погружных электродов поверхностные не контактируют с раствором, так как отделены от него слоем рубероида.

Металлические полосы обеспечивают прогрев бетона не глубже, чем на половину расстояния от одного электрода до другого. Это тепло достает и до внутренних слоев, но там процессы протекают не так интенсивно. А вот разнофазные пластины могут нагревать весь объем, если он не слишком большой.

Основное достоинство метода прогрева электродами – возможность поддержания оптимальной температуры бетона в конструкциях любой толщины и формы.

Особенности различных способов

1. Использование нагревательных проводов.

Тот же электропрогрев бетона, но в отличие от электродного метода, увеличение температуры в монолите обеспечивают уложенные в массу изолированные провода. Они сами нагреваются в процессе работы, а раствору передают только тепловую энергию.

Марки нагревающих элементов:

1. Чаще всего в зимнее время используется электропровод марки ПНСВ от 1,2 до 3 мм в диаметре.

При этом нужно учитывать, что ПНСВ не должен во время работы находиться на воздухе, иначе его изоляция просто оплавится. Отсюда и особенности технологии прогрева – применение так называемых холодных концов, подключенных в местах выхода ПНСВ из бетона. Их роль исполняют короткие установочные провода типа АПВ-2,5 или АПВ-4 с алюминиевой жилой.

Схема прогрева проводом ПНСВ 1,2 при его подключении к трансформатору может быть одно- или трехфазной. Главное, чтобы линии отстояли друг от друга минимум на 15 мм, а сила тока не превышала 15 А. Длина обогреваемых секций подбирается вдвое меньше, чем значение напряжения на трансформаторе.

2. Применение кабелей КДБС или ВЕТ позволяет полностью исключить из технологии трансформатор для прогрева бетона.

К такому методу прибегают, когда нет возможности обеспечить станции питание в 380 В или использовать требуемое количество понижающих трансформаторов на объекте. ВЕТ-кабели могут работать от бытовой электросети, на концах они снабжаются соединительными муфтами, что весьма удобно при укладке. Правда, стоит такой провод дороже, чем ПНСВ.

Подключение производится к понижающему трансформатору, выдающему со второй обмотки 75 или 36 В. Схема укладки провода ВЕТ не отличается от аналогичной для ПНСВ. При этом важно подобрать оборудование, предусматривающее плавную регулировку силы тока. Это позволит поддерживать нормальную температуру в монолитной конструкции.

Как вариант для частного строительства, подойдет обычный сварочный аппарат. К профессиональному оборудованию относятся трансформаторные станции, которые обеспечивают прогрев до 30 кубов: КТПТО-80/86, серия трансформаторов СПБ либо сухая станция ТСДЗ-63.

Прогрев с использованием проводов позволяет сократить время набора 70%-ной прочности до нескольких дней. При такой высокой эффективности метод выгодно отличается экономичностью.

3. Греющая опалубка.

Контактный прогрев бетона предпочтительно использовать на объектах быстрого возведения. Термоактивная опалубка широко применяется для строительства монолитных домов, но раствор должен иметь высокую скорость застывания. Эта технология довольно требовательна к температуре смеси и окружающей среды: промерзший грунт на глубину 30-50 см и сам состав должны быть прогреты до +15 °С.

4. Индукционный метод.

Отлично подходит для изготовления бетонных свай и колонн. Повышение температуры внутри опалубки происходит за счет воздействия электромагнитного поля, создаваемого внешними витками провода. Вся конструкция превращается в своеобразную индукционную катушку, разогревающую металлическую арматуру. А та в свою очередь осуществляет прогрев раствора изнутри. Достоинства метода – равномерный прогрев и возможность производить предварительный разогрев опалубки и армирующих стержней еще до заливки.

5. Тепловые излучатели.

Относительно недорогой и наименее энергозатратный способ – прогрев тепловыми пушками, ИК-излучателями и другими внешними электрообогревателями. Его плюсом и одновременно недостатком является локальное воздействие на заливку. Поэтому сфера применения этой технологии ограничивается ремонтными работами, заделкой стыков и изготовлением малых форм. При этом внешний обогрев не будет достаточно эффективен, если обрабатываемую часть конструкции не оградить от внешних условий временным пологом. Достоинства: минимум аппаратуры и кабельной продукции, дешевизна и относительно невысокие энергозатраты.

Самый дорогой и энергоемкий прогрев бетона в зимнее время применяется только в промышленном строительстве. Смысл технологии заключается в том, что бетон заливается в сложную двухстенную опалубку, через которую подается горячий пар. Он обволакивает бетонную поверхность, образуя «паровую рубашку». Это обеспечивает и равномерный прогрев конструкции, и подачу влаги, необходимой для гидратации.

Несмотря на всю сложность организации прогрева, этот способ является наиболее эффективным. А для сокращения расходов в сам бетонный раствор вводятся пластифицирующие добавки, ускоряющие процесс твердения.

Существует и пассивный метод, когда вокруг конструкции создается термос из теплоизолирующих матов. Но он сам по себе неэффективен – его уместно использовать только в качестве дополнительной меры вместе с другими способами.

Как правильно подобрать провод (кабель) для прогрева бетона в зимнее время

В настоящее время бетон используется не только для возведения фундамента, но и при строительстве различных перекрытий и опор.

Полное затвердевание после заливки происходит через 28 дней при условии плюсовой температуры.

В холодный же период года вода, входящая в состав бетона, не вступает в химическую реакцию с остальными компонентами и превращается в лед, что приводит к более медленному затвердеванию бетона и потере его прочности. Лучший способ избежать этого – использовать специальный провод для прогрева бетона.

Зачем нужен прогрев бетона

Процессы, происходящие в бетоне во время его застывания, зависят от температуры окружающей среды. В зимнее время, когда температура опускается ниже нуля, происходит замерзание воды, из-за чего появляются проблемы с гидратацией бетона. При этом растров застывает не полностью, так как в некоторых местах проходит лишь его замерзание. Когда же температура окружающей среды начнет повышаться, вода растает, а монолитность раствора нарушится. Данный процесс приведет к нарушению целостности конструкции после застывания и снижению ее долговечности.

При этом посторонних процессов в смеси не происходит, а значит, структура остается однородной, что положительно отражается на долговечности и прочности бетона.

Виды нагревательных проводов и кабелей

В большинстве случаев электропрогрев бетона в зимнее время осуществляется проводом ПНСВ (расшифровка: провод нагревательный, материал жилы – сталь, изоляция – ПВХ), так как среди всех видов он отличается минимальной ценой и максимально простым монтажом.

На втором месте по частоте использования – кабель ПНСП для прогрева бетона. Его основное различие с проводом, представленным выше – изоляция из полипропилена (в отличие от ПНСВ с изоляцией ПВХ). Данный материал позволяет немного повысить теплопроводность кабеля. Однако его стоимость выше, поэтому применяется он только в случаях, когда длина используемого кабеля имеет определяющее значение. Чаще такой провод монтируется как теплый пол.

Провода данного типа сложно монтировать, так как необходим точный расчет их длины. Если на стадии проектирования были допущены незначительные ошибки, исправить это можно регулировкой подающего напряжения.

Разновидности и особенности кабелей КДБС и ВЕТ

Если планируется электропрогрев бетона в зимнее время проводом ПНСВ или ПНСП, необходимо включение в систему дополнительного регулирующего оборудования, с помощью которого можно менять мощность в сети для регулирования тепловыделения. Для упрощения системы путем исключения из нее дополнительного оборудования можно использовать двухжильные термокабели, которые регулируют теплоотдачу самостоятельно: финский ВЕТ или российский КДБС.

Кабели данного типа подключаются напрямую к сети 220 вольт, установка дополнительных приборов для регулировки не требуется.

  1. Линейная мощность, Вт/м (ВЕТ – 35-45, КДБС – 40).
  2. Рекомендованный радиус изгиба, мм (ВЕТ – 25, КДБС – 35).
  3. Номинальный диаметр, мм (ВЕТ – 6, КДБС – 7).
  4. Размеры секций, м (ВЕТ – 3,3-85, КДБС – 10-150).

Плюсы и минусы ПНСВ

Электропрогрев бетона проводом пнсв – наиболее экономически выгодный вариант. Связано это с дешевизной самого провода, а также сравнительно низким потреблением электрической мощности. Кроме того, кабель данного типа отличается устойчивостью к воздействию щелочной и кислотной среды, благодаря чему его можно использовать в различных сложных условиях окружающей среды.

  1. Сложность проектных работ из-за необходимости точного расчета длины кабеля.
  2. Необходимость включения в систему понижающей подстанции.

Стоимость таких подстанций (ПТ) достаточно велика. Их функционирование требуется постоянно, поэтому брать оборудование в аренду не целесообразно, ведь за это нужно будет отдать не менее 10% от общей стоимости. В некоторых случаях возможно использование сварочных аппаратов. Однако подходят они только для небольших объектов строительства, так как при интенсивной работе быстро выходят из строя.

Технология прогрева с использованием ПНСВ

Многие считают, что для того чтобы осуществить прогрев бетона проводом ПНСВ, достаточно уложить кабели и подключить их к электрической сети. Данный подход в корне не верен. Для правильного прогрева проводами необходимо четкое регулирование мощности, при котором учитывается много факторов. Как недостаточная, так и излишне высокая температура раствора приведет к разрушению конструкции.

Читать еще:  Раковины в бетоне методы устранения

Бетонный раствор, конечно, не закипит, так как оболочка провода начинает плавиться при 80 градусах. Однако в случае, когда она полностью исчезнет, провод может соприкоснуться с металлической арматурой, что приведет к короткому замыканию.

Схема подключения греющего провода должна быть тщательно продумана. Ниже приведен один из наиболее эффективных вариантов под названием «звезда».

  1. На данном этапе большая часть от всего объема воды в растворе поглощается, после чего происходит формирование кристаллической структуры. При этом температура бетонной массы достигает 55 градусов (продолжительность нагрева зависит от температуры окружающей среды). Чтобы процесс прогрева был непрерывным и равномерным, необходимо поддержание напряжения 95 вольт.
  2. На данном этапе уменьшается величина подаваемого напряжения до 75 вольт для кристаллизации бетонного раствора. Температура внутри поддерживается такая же (55 градусов) за счет инертности раствора. Важно отметить, что если на данном этапе температура окружающей среды резко понизится, необходимо увеличить величину подаваемого напряжения на 10 вольт.
  3. Данный этап можно назвать остыванием. При этом провод для прогрева бетона ПНСВ нагрет не более чем на 20 градусов. На последнем этапе бетонный раствор набирает до 80% своей прочности.

Расчет длины

Если планируется прогрев смеси бетона проводом ПНСВ, в первую очередь необходимо рассчитать его длину в зависимости от нескольких параметров. Главный определяющий фактор – расчетное количество тепловой энергии, необходимой для нагрева бетонной массы до требуемой температуры. Количество тепла зависит от окружающей температуры, относительной влажности воздуха, размера объекта.

При расчете длины важно знать основные характеристики ПНСВ, а именно — потребляемую мощность. Для самого популярного диаметра 1,2 мм она равна 0,015 Ом/м, у кабелей большего сечения сопротивление ниже, диаметр 2 мм соответствует сопротивлению 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Для окончательного расчета необходимой мощности нужно полученный показатель умножить на протяженность кабеля.

Подобным образом рассчитываются и понижающие трансформаторы. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Монтаж ПНСВ

Схема укладки провода ПНСВ должна быть продумана еще на этапе проектирования объекта. Главное – его монтаж в опалубке до того, как начинается заливка бетонного раствора. В большинстве случаев для прикрепления провода к арматуре используется проволока из алюминия.

Чтобы прогрев бетонной смеси был максимально равномерным, секции монтируются на равном расстоянии друг от друга как по вертикали, так и по горизонтали. Расстояние между соседними должно составлять около 15 сантиметров.

Важно отметить, что если в сети напряжение 380 вольт, длина сегмента должна составлять 31 погонный метр, если 220 – 17 метров. Только в таком случае прогрев смеси будет проходить равномерно, а значит, он достигнет максимально возможной прочности. В случае, если секция будет смонтирована более длинной, тепловая энергия не будет доходить до самых удаленных участков.

В большинстве случаев это достигается путем присоединения кабеля с жилами из алюминия и его плотной обмотки. Когда бетонная смесь полностью застыла, провод не вытаскивается из него, он навсегда остается внутри и впоследствии может быть использован как «теплый пол».

Монтаж секционного обогревочного кабеля

Кабель для прогрева бетона данного типа поставляется на объект не в бухте, а в виде готовой секции. Данный факт несколько упрощает процесс монтажа, так как нет необходимости в обрезке провода. Сбор системы после следующих подготовительных работ:

  1. Расчет необходимой мощности одного сегмента в зависимости от объема бетонной смеси.
  2. Выбор длины провода.

Процесс монтажа системы достаточно простой, однако требует определенных знаний и навыков.

  • Для обогрева одного кубического метра бетонной смеси в зависимости от состава необходимо 500-1500 Вт (в зависимости от температуры окружающей среды). Сократить расход электрической энергии можно путем добавления специальных присадок для понижения температуры застывания смеси или утеплив опалубку.
  • Если бетонной смесью заливается перекрытие или какая-либо балка, расчет электропроводки проводится с учетом следующих начальных данных: 4 метра провода на 1 квадратный метр поверхности элемента.
  • Провод надежно защищен, поэтому его можно крепить к арматуре.
  • Провода всегда должны соприкасаться с опалубкой.
  • В процессе монтажа важно следить за расстоянием между кабелями, в противном случае электропрогрев бетона греющим проводом будет неравномерным.
  • Необходимо выдерживать минимум 4 сантиметра между соседними контурами.

В процессе монтажа необходимо следить за тем, чтобы провода не пересекались.

Преимущества и особенности сегментированного кабеля

Главное достоинство сегментированного кабеля – отсутствие необходимости во включении дополнительного оборудования в систему. Данный способ прогрева бетона максимально безопасен (в отличие от случаев, когда используются электроды), так как вероятность поражения электричеством практически сведена к нулю. Еще одно достоинство – простота монтажа и расчетов при использовании нагревательной секции. Материал уже разбит на сегменты, остается лишь высчитать необходимую мощность.

Прогрев бетона в зимнее время проводом ПНСВ значительно дешевле, поэтому сегментированный кабель, который разбит на секции шинопроводов, применяется лишь на небольших объектах, когда в приоритете скорость возведения и точность проводимых работ.

Прогрев бетона проводом ПНСВ

Метод прогрева бетона проводом ПНСВ-1,2 (видео тут)

Большое значение при укладке бетонной смеси в зимних условиях имеют способы и средства ее подогрева.
Перед укладкой смеси в опалубку на арматурном каркасе закрепляют нагревательный провод ПНСВ-1,2, длина и количество секций определяют расчетом согласно характеристики провода. Длина каждой секции рассчитывается исходя из напряжения трансформатора. При напряжении 220В длина секции составляет 110 м, при уменьшении напряжения длина секции уменьшается пропорционально. Также непосредственно на объекте необходимо провести практическое испытание длины секции на температуру нагрева, т.к. она может изменяться в зависимости от мощности трансформатора и мощности питающей линии. Тепло, выделяемое нагревательными секциями проводов, разогревает бетонную смесь до 40-80 С° при среднем расходе провода 50-60 м/м³ смеси.
Электропитание проводов и выдерживание требуемых режимов обогрева смеси осуществляют через трансформаторную установку ППЭБ (3 * 380В, линейный ток 500А, ПН-100%, 61кВА). Одна установка обеспечивает подогрев 20-30 м³ смеси.

Характеристики провода ПНСВ:

Длина секции провода (при использовании ППЭБ), м

Удельная мощность тепловыделения провода:

для армированных конструкций, Вт/п.м.

для неармированных конструкций, Вт/п.м.

Напряжение питания для секции, В

Среднее значение сопротивления жилы, Ом/м

Мощность удельная, кВт/м 3

Расход провода, п.м./м³

Цикл термосного выдерживания конструкций, суток

Указания по монтажу и эксплуатации провода нагрева ПНСВ:

  1. Прокладка проводов нагрева ПНСВ должна проводиться при температуре окружающего воздуха не ниже -25 °C.
  2. Режим работы проводов – повторно-кратковременный или длительный.
  3. Радиус изгиба проводов при монтаже должен быть не менее трех наружных диаметров. Минимальный радиус изгиба – 15 мм.
  4. Провода должны эксплуатироваться при фиксированном монтаже.
  5. Смонтированные провода не должны пересекаться или прикасаться к друг другу.
    Расстояние между проводами должно быть не менее 15 мм.
  6. Подводка питания к нагревательной секции осуществляется холодными концами. Места соединения нагревательного провода и холодного конца рекомендуется выводить за пределы обогреваемой зоны.
  7. Соединение холодного конца с нагревательными проводами рекомендуется проводить методом пайки с применением бандажа из медной проволоки посредством клеммных коробок. Допускается любой другой метод, обеспечивающий надежность соединения при эксплуатации.

Электрообогрев можно начинать только после завершения укладки бетона и размещения всех греющих элементов и нижней части выводов в бетоне, а также выполнения указаний по технике безопасности. В конструкциях необходимо сделать скважины для замера температур, помощью токоизмерительных клещей измерить пусковую силу тока во всех греющих элементах. При показаниях, превышающих допустимые при пуске, необходимо понизить напряжение в сети. Измерение температуры и силы тока производить через 1 час в первые три часа, затем 1 раз в смену.
Электрообогрев бетона необходимо выполнять с соблюдением требований техники безопасности СНиП 111-4-80/гл.11 и ГОСТ12.1.013-78 – бетонные и ж/бетонные работы и электробезопасность.

Радиус изгиба при монтаже не менее 3 наружных диаметров провода. Провод поставляется в бухтах. Провод соответствует ТУ 16.К71-013 и имеет соответствующий сертификат.

Дополнительное оборудование:

  • понижающий трансформатор;
  • магистральные кабели;
  • провода холодных концов;
  • средства тепловой защиты.

Рекомендации п о выбору технологических параметров электропрогрева бетона

и расчету нагревательных проводов

1.2. Основным технологическим параметром является удельная электрическая (тепловая) мощность Р уд , приходящаяся на единицу площади обогреваемых конструкций

где P – суммарная электрическая мощность нагревателей, Вт;

F – площадь обогрева, м².

При расчете определяют необходимую электрическую (тепловую) мощность, обеспечивающую нагрев бетона до требуемой температуры. При этом удельная мощность должна быть постоянной в течение всей продолжительности обогрева бетона для двух характерных случаев:

— нагрева бетона до определенной температуры, получаемой подбором необходимой мощности для конкретных внешних условий теплообмена по так называемому саморегулирующемуся режиму, при котором отпадает надобность в устройствах для регулирования температуры бетона;

— компенсаций тепловых потерь уложенной в опалубку бетонной смеси, предварительно разогретой по способу «управляемого термоса».

1.3. Потребная удельная электрическая мощность проволочных нагревателей зависит от массивности обогреваемых монолитных конструкций, расчетной температуры наружного воздуха и скорости ветра, коэффициента теплопередачи утеплителя. Удельная мощность для обоих случаев может быть определена графически (рис. 2, 3).

Пример пользования номограммой (см. рис. 2)

Необходимо определить потребляемую удельную мощность проволочных нагревателей при двухстороннем обогреве протяженной монолитной стены толщиной 500 мм. Известно, что коэффициент теплопередачи утепленной опалубки К равен 1 Вт/(м²*°С), бетонная смесь с удельным расходом цемента составляет 350 кг/м², температура наружного воздуха — 30°С.

Решение 1. Разница температуры бетона и наружного воздуха ΔТ составляет
40 — (-30) = 70 °С

Рис. 2. Номограмма для определения удельной мощности нагревателей
при саморегулирующемся режиме.

Рис. 3. График определения удельной мощности нагревателей
при использовании предварительно разогретой бетонной смеси
и применении метода «управляемого термоса».

2. Модуль поверхности монолитной стены М п устанавливаем по формуле:

М п = F/V = 2.0 / 0.5 = 4 м

где F – площадь поверхности охлаждения стены, м²;

V – объем при условной площади стены, равной 1 мР, м².

Определяем удельную мощность нагревателей, руководствуясь последовательностью операций, указанных в ключе (см. рис. 2). Получаем 290 Вт/м².

Пример пользования графиком (см. рис. 3).

Следует определить потребляемую удельную мощность проволочных нагревателей для компенсации теплопотерь с 1 м² поверхности монолитной конструкции, имеющей температуру +5 °С. Температура наружного воздуха 40 °С, скорость ветра 5 м/с. В качестве утеплителя использованы минераловатные маты толщиной 50 мм.

  1. По таблице 2 определяем коэффициент теплопередачи утеплителя К. Он равен 1,31 Вт/(м²*°С).
  2. Температурный перепад между бетоном и наружным воздухом ΔТ равен 50 — (-40) = 90 °С
  3. На графике от значения 90 °С на оси ординат проводим перпендикуляр до аппроксимированной прямой, соответствующей значению коэффициента теплопередачи 1,31 Вт/(м²´°С). Из точки пересечения опускаем перпендикуляр на ось абсцисс. Получаем 0,12 кВт/м².

1.4. Другим важным технологическим параметром является равномерность температурного поля на обогреваемой поверхности конструкции, обеспечиваемая необходимой плотностью укладки нагревательного провода, или расстоянием (шагом) между смежными витками провода.

1.5. Шаг b проволочных нагревателей и количество рядов нагревателей в монолитной конструкции обусловлены требуемой удельной мощностью по расчету. Шаг проволочных нагревателей можно определить по формуле:

где Pуд – удельная мощность, Вт/м².

1.6. В монолитных конструкциях шаг нагревателей должен находиться в пределах 50 – 150 мм. Для конструкций, контактирующих с грунтом (подготовки под полы, каменные и искусственные основания и т.п.), шаг может приниматься равным 150 – 200 мм.

Читать еще:  Строительство септика из бетонных колец своими руками

1.7. В стыках сборных железобетонных элементов, цементно-песчаных подливках под колонны и оборудование, местных заделках шаг нагревателей обычно принимают 25 – 70 мм.

1.8. В ответственных монолитных элементах и несущих конструкциях при шаге нагревателей менее 300 мм и их многорядном размещении возможность закладки провода в бетон должна быть согласована с проектной организацией.

1.9. Эффективность обогрева зависит от качества и толщины утеплителя. При возведении монолитных конструкций толщину, а также вид утеплителя (или теплозащитные свойства разных видов утеплителя) в опалубке и уложенного на открытые бетонные поверхности, рекомендуется принимать одинаковыми.

1.10. Коэффициенты теплопередачи основных теплоизоляционных материалов различной толщины, характеристики которых приведены в приложении 3, определяют по формуле:

где δi – толщина слоя теплоизоляционного материала, м,

λi – коэффициент теплопроводности материала слоя, Вт/(м*°С),

αλ – коэффициент передачи теплоты от утеплителя и опалубки излучением, принимаемый равным 2,5 Вт/(м²*°С),

αk – коэффициент передачи теплоты конвекцией, принимаемый равным при скорости ветра:

до 5 м/с – 19 Вт/(м²*°С),

до 10 м/с – 30 Вт/(м²*°С),

до 15 м/с – 43 Вт/(м²*°С).

1.11. Средние значения коэффициента теплопередачи утеплителей различных видов, используемых для укрытия открытых горизонтальных бетонных поверхностей, приведены в таблице 2.

Вид утеплителя нормальной
влажности с пленочным укрытием

Коэффициент теплопередачи К, Вт/(м²´°С),
при скорости ветра, м/с

Сосновые опилки толщиной 100 мм
по слою толя

Минераловатные маты
на синтетическом связующем
толщиной 50 мм

Шлак толщиной слоя 150 мм

Деревянные доски толщиной

1.12. Коэффициент теплопередачи стальных опалубочных щитов, утепленных минераловатными матами различной толщины, может быть определен по номограмме (рис. 4).

Пример.

Требуется определить коэффициент теплопередачи стального опалубочного щита размером 3 *1,5 м, утепленного минераловатными матами толщиной 40 мм и фанерой толщиной 3 мм. Скорость ветра 3 м/с, площадь поверхности открытых ребер щита – 600 см².

Решение.

Отношение периметра ребер каркаса (9 м) к площади щита (4,5 м²) составляет 2:1. Определим коэффициент теплопередачи щита, пользуясь ключом к номограмме. Получаем 2,5 Вт/(м²*°С).

1.13. В качестве утеплителя рекомендуется использовать минераловатные маты и плиты ПП на синтетическом связующем, холстопрошивной стекломатериал (ХПС), а для щитов опалубки также заливную теплоизоляцию на основе пенополиуретана и фенопластов. При устройстве теплоизоляции следует закрыть утеплителем все промежуточные ребра каркаса щита, являющиеся «мостиками холода». Коэффициент теплопередачи утепленных щитов не должен превышать 3,5 Вт/(м²*°С).

Рис. 4. Номограмма для определения коэффициентов теплопередачи
стальных опалубочных щитов.

1.14. При обеспечении максимально допускаемой температуры обогрева для характерных типов монолитных конструкций следует выдерживать режимы обогрева, приведенные на рис. 5, 6, 7. Продолжительность термообработки и выдерживания бетона должна, при необходимости, корректироваться работниками строительной лаборатории путем сопоставления фактического режима обогрева с рекомендуемым. Приведенные режимы обеспечивают набор прочности бетона к концу выдерживания 50 – 70 % R28. Температура контролируется на поверхности бетона конструкции.

Рис. 5. Номограмма для определения продолжительности термообработки монолитных стен и перекрытий.

Рис. 6. Номограмма для определения продолжительности термообработки монолитных колонн, ригелей, балок и фундаментов средней массивности
столбчатого типа высотой более 1 м.

Рис. 7. Номограмма для определения продолжительности термообработки монолитных фундаментов столбчатого типа высотой более 1 м.

2. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

2.1. Электрический расчет сводится к определению рабочего напряжения при минимально допустимой длине проволочного нагревателя и максимально допустимой на него нагрузки.

Выбор длины проволочного нагревателя является не только технической, но и экономической задачей, так как завышение длины сверх оптимальной приводит к перерасходу провода, более плотной навивке в монолитной конструкции, к увеличению трудоемкости работ, а в ряде случаев затрудняет укладку бетонной смеси. Уменьшение длины провода приводит к его перегреву, возникновению опасных деструктивных явлений из-за больших температурных перепадов, местному пересушиванию бетона и в конечном результате к снижению его качественных характеристик.

2.2. Основным расчетным параметром при определении длины проволочного нагревателя является линейная (погонная) электрическая нагрузка, приходящаяся на единицу его длины. Для условий теплоотдачи в твердеющем бетоне оптимальная погонная нагрузка р на проволочные нагреватели определена экспериментально и составляет:

  • для армированных монолитных конструкций 30 – 35 Вт/м,
  • для неармированных конструкций 35 – 40 Вт/м.

2.3. Максимальная погонная нагрузка на провод не должна превышать 45 – 50 Вт/м, так как при большей величине нагрузки температура его превышает 100 °С. Это может привести к структурным нарушениям и снижению качественных характеристик бетона. Такую нагрузку в течение всей продолжительности электротермообработки монолитного бетона выдерживают нагревательные провода с поливинилхлоридной и другими видами теплостойкой изоляции в отличие от проводов с полиэтиленовой изоляцией, у которых ее повреждение из-за перегрева приводит к короткому замыканию токонесущей жилы на стальную арматуру и закладные детали.

2.4. Длину электронагревателей lопределяют по формуле

где U – рабочее напряжение питания, В;

S – сечение токонесущей жилы, мм²;

p t – удельное сопротивление жилы при рабочей температуре, Ом*мм²/м;

P – оптимальная погонная нагрузка на провод, Вт/м.

2.5. Учитывая, что удельное сопротивление нагревательных проводов различных марок может значительно меняться в зависимости от химического состава и качества токопроводящих жил, длину нагревателя рекомендуется рассчитывать в каждом отдельном случае, уточнив предварительно величину удельного сопротивления.

2.6. Сопротивление токонесущей жилы провода при нагреве увеличивается. Сопротивление нагретой жилы Rt в зависимости от рабочей температуры t определяют по формуле:

где R – сопротивление жилы при нормальной (20 °С) температуре, Ом;

α – температурный коэффициент сопротивления, стальной жилы 0,0046 °С -1 .

2.7. Сопротивление стальных токонесущих жил постоянному току при нормальной температуре R нагревательных проводов может быть определено по таблице 3.

Стальная оцинкованная жила

Электрическое
сопротивление
при 20 °С, Ом, км

ПНСВ на стройплощадке и дома

Укладка бетонного раствора при минусовой температуре требует специальных мероприятий, предупреждающих замерзание воды. Это приведет к потере прочности, уменьшит надежность возводимого сооружения. Существует много технологий поддержания постоянной температуры компонентов смеси. Эффективным способом, обеспечивающим нормальное затвердевание, является применение специально созданного нагревательного провода ПНСВ. Интересен вопрос бытового применения. Рассмотрены основные параметры, характеристики, практические вопросы.

Параметры, сфера применения

Свойства определены требованиями ТУ 16.К71-013-88, код ОКП 35581304. Применяется для прогрева:

  • Монолита, армированного бетона на строительстве промышленных объектов;
  • Объектов, зданий, сооружений промышленных комплексов различного назначения, строительных механизмов;
  • Может применяться системами обогрева бытовых и производственных строительных конструкций.

Маркировка ПНСВ обозначает конструкцию, область использования, материалы: «П»ровод «Н»агревательный, одинарный «С»тальной проводник, изолирован полихлор«В»инилом.

Базовые, определяющие показатели демонстрируются таблицей:

Физические, химические особенности материалов придают параметрам значения, обеспечившие:

  • Отсутствие реакции при взаимодействии с водой, химически активными водными растворами соли, щелочей, концентрация раствора которых достигает 20÷30%;
  • Прочность, позволяющая изгибать на ролике, размер которого равен десяти диаметрам провода, без утраты механических свойств не менее трех циклов;
  • Возможность работать режимами постоянного длительного нагрева или импульсном, кратковременном повторяющемся.

Выполняя работы по укладке нужно учитывать ограничения:

  1. Изгибание производится с радиусом, величина которого меньше пяти диаметров;
  2. Не допускается пересечения под любым углом или касания в прогреваемом объеме;
  3. Запрещается располагать провода не ближе, чем 15 см друг от друга.

Диапазон модельного ряда ПНСВ широк. Конкретные значения величин геометрического размера определяются техническими условиями предприятия – изготовителя соответственно требований соответствующего ГОСТ. Тенденция зависимости параметров от номинального диаметра жилы заложена ТУ 16.К71-013-88, иллюстрируется таблицей:

Схема подключения, оборудование для подогрева

Подогрев залитого бетона, проводится только мощными подрядчиками на больших объектах. Метод дорого стоит, требует наличия работников высокой квалификации, специального оборудования. Трансформаторная подстанция обогрева обеспечивает питание греющей проводки пониженным напряжением, дает возможность использовать большой ток пониженного напряжения.

Например, популярная подстанция КТПТО с масляным трехфазным трансформатором ТМТО-80 обладает такими основными техническими характеристиками:

Дополнительно может автоматически или вручную регулировать прогрев бетона в интервале 0÷100°C. Остальные функции подстанции, не относящиеся к подогреву, сейчас рассматриваться не будут.

Нагревательные секции могут быть подключены к трансформатору по однофазной или трехфазной схеме звездой или треугольником. Трехфазные нагреватели делают нагрузку сети более равномерной.

Параллельным включением нужного количества секций набирается достаточная для обогрева необходимой площади мощность.

Расчет нагревательной секции

На сегодняшний день существует много вариантов онлайн калькуляторов, удобных, позволяющих мгновенно получить точную мощность, количество, сечение греющего кабеля. Приведенный ниже расчет иллюстрирует логику, приводит методику проведения вычислений самого общего вида.

Под мебелью, коврами, другими атрибутами домашней обстановки, подогрев размещать запрещено. Необходимая для подогрева одного квадратного метра мощность зависит от назначения помещения. Составляет, при использовании дополнительного к основному подогрева:

Вариант использования как единственного элемента отопительной системы, потребует 160÷200 Вт/м 2 .

Например: рассчитывается электрический теплый пол, необходимая площадь обогрева 10 м 2 , имеется ПНСВ 1,2. Характеристики взяты из таблиц параметров:

  1. Мощность подогревателя пола спальни, для необходимости обеспечения 120 Вт/м 2 , Вт: 10*120=1200;
  2. Длина элемента нагревателя 1200 Вт, удельная мощность 20 ватт на погонный метр, метров: 1200/20=60;
  3. На одном квадратном метре нужно уложить (выполняя требования ТУ), метров провода: 60/10=6;
  4. Омическое сопротивление 60 метров провода, удельное сопротивление одного метра стальной жилы равно 0,15 Ом составит, Ом: 60*0,15=9;
  5. Включенная в сеть 220В секция нагрева с проводом диаметром 1,2 мм. не может быть длиной менее 110 метров (ТУ). Иначе получится: сопротивление укороченного элемента уменьшается, ток возрастает, что вызывает перегрев, увеличивается вероятность разрушения. Активное сопротивление секции нагрева равно, Ом: 110*0,15=16,5. Рекомендованный ТУ ток эффективного нагрева составляет, А: I=U/R=220/16,5=13,33. Округленно 13 ампер.
  6. Расчетные 60 метров провода короче нормированной длины секции, не могут напрямую быть запитаны сетью. Требуется понижающий напряжение трансформатор. Рассчитать его можно так:
  7. Вторичная обмотка: напряжение, В: U=I*R=13*9=117, мощность, Вт: P=U*I=117*13=1521
  8. Полная мощность трансформатора, Вт: 1521*1,25=1901,3

Итого: для устройства теплого пола площадью 10 м, необходимо:

  1. 60 метров провода ПНСВ 1,2;
  2. Понижающий трансформатор мощностью 2 киловатта, напряжение вторичной обмотки 110÷120 вольт.

Подходящим вариантом при подборе трансформатора может оказаться сварочный аппарат.

Применение терморегулятора повысит комфортность пользования теплым полом, позволит экономнее расходовать электрическую энергию.

Основы технологии укладки и монтажа

После приобретения необходимого нагревательного материала, начинается изготовление системы подогрева:

  • Покупная бухта или бобина нарезается на нагревательные секции, длины которых определены ТУ, в необходимом количестве. Допускается изготовление секции из отрезков, обеспечив надежный контакт соединения;
  • Концы зачищаются на 4 см, к ним присоединяются «холодные концы» — отрезки алюминиевого изолированного проводника достаточной, для подключения к трансформатору, длины. Надежное изолированное соединение должно располагаться внутри обогреваемого объема;
  • Нагревательные секции размещаются в опалубке. Принимаются меры для фиксации правильного расположения, отсутствия провисаний, ухода за границы будущего монолита. Если применяется арматура, можно приматываться к ней;
    • Не допускается пересечение, касание участков провода в объеме опалубки. Расстояние между проводами не менее 15 см.
    • Рекомендуется, улучшая равномерность распределения тепла, обмотать провод тонкой фольгой из металла толщиной 0,2÷0,5 мм;
    • Все размеченные «Холодные концы» после укладки должны находиться у одного края;
  • Подавать напряжение на ПНСВ, не укрытое раствором полностью, категорически запрещено;
  • Перед подключением к трансформаторной подстанции мегомметром проверить отсутствие нарушения целостности изоляции после монтажа.

Во время прогрева бетона на строительных площадках, обеспечивая требования электробезопасности, нужно принимать меры по ограждению опасного участка, ограничению пребывания на нем посторонних лиц.

После полного высыхания использование подогрева полов или стен не представляет опасности.

Ссылка на основную публикацию
"
×
×
"
Adblock
detector