""

Как определить прочность бетона неразрушающим методом

Неразрушающий контроль бетона: прямые и косвенные методы. Сравнительная характеристика и тестирование

Строительные конструкции на базе смеси из вяжущего вещества, песка и заполнителя нуждаются в тестировании на предмет надежности и безопасности. Однако подобные исследования не должны стать причиной прерывания эксплуатации испытываемого объекта, поэтому производится определение прочности бетона неразрушающим методом. Это позволяет сократить расходы, снизить трудоемкость и исключить локальные повреждения.

На фото демонстрируется анализ свойств бетона.

Прямые методы контроля

Данные способы необходимы для формирования градуировочных зависимостей и их последующей корректировки для косвенных методов, проводимых на тех же самых участках сооружения. Технология определения прочностных качеств бетона может быть применима при освидетельствовании на различных стадиях возведения строений, а также при эксплуатации и реконструкции готовых объектов.

Отрыв со скалыванием

Подобная операция производится в соответствии с государственными стандартами, где отражены основные сведения о способе проведения. На полученные результаты не оказывает никакого влияния состояние поверхности.

Для проведения исследований используются анкерные устройства трех типов.

Так делается отрыв со скалыванием.

  1. Рабочий стержень, оснащенный анкерной головкой.
  2. Прибор с наличием разжимного конуса и рифленых сегментных щек.
  3. Устройство с полым разжимным конусом, который имеет специальный стержень для фиксации приспособления в одном положении.

Представлены основные типы приспособлений.

Примечание! Выбирая тип приспособления и глубину проникновения анкера, следует брать в расчет предполагаемую прочность состава и размеры заполнителя, что отражено в таблице ниже.

Дополнение! Ультразвуковые изыскания предоставляют возможность выполнять массовые испытания практических любых конструкций неограниченное количество раз. Основной недостаток кроется в допускаемой погрешности.

Упругий отскок

Неразрушающий контроль прочности бетона этим методом позволяет установить зависимость между прочностью на сжатие и упругостью материала. При исследовании металлический боек основного прибора после удара отдаляется на определенное расстояние, которое является показателем прочностных качеств конструкции.

Так осуществляется проверка отскоком.

Во время испытаний приспособление фиксируется так, чтобы стальной элемент плотно соприкасался с бетонной поверхностью, для чего применяются специальные винты. После крепления маятник устанавливается горизонтально. В этом случае он защелкивается непосредственно спусковым крючком.

Приложив устройство перпендикулярно к плоскости, нажимают на курок. Боек взводится автоматически, после чего самостоятельно освобождается и совершает удар под действием особой пружины. Металлический элемент отскакивает на какое-то расстояние, которое измеряется специальной шкалой.

Схема движения внутреннего стержня.

В качестве основного инструмента для испытаний используется прибор системы КИСИ, который имеет достаточно сложное строение. Прочность затвердевшей смеси удается определить на основании данных устройства после проведения 6-7 тестов по специальному графику.

Придание ударного импульса

Благодаря этому методу исследования можно зафиксировать энергию удара, освобождающуюся в момент соприкосновения бойка с бетонной конструкцией. Положительным моментом считается то факт, что приборы неразрушающего контроля бетона, работающие по принципу ударного импульса, имеют компактные размеры. Однако их цена достаточно высока.

Результаты испытаний составов разных классов.

Пластическая деформация

При проведении операции осуществляется измерение размеров следа, оставленного на бетонной поверхности стальным элементом. Метод считается несколько устаревшим, но в связи с дешевизной оборудования он продолжает активно использоваться в строительной среде. После нанесенного удара измеряются оставшиеся отпечатки.

Устройства для определения прочности такого типа базируются на вдавливании стержня непосредственно в плоскость путем статического давления нужной силы или обычного удара. В качестве основных приборов используются маятниковые, молотковые и пружинные изделия.

Ниже приводятся условия проведения операции.

Молоток Кашкарова для проведения пластической деформации.

  • Испытания должны осуществляться на участке, площадь которого колеблется от 100 до 400 кв. см.
  • При проведении данной операции следует делать не менее пяти измерений с высокой точностью.
  • Ударная сила должна иметь перпендикулярное направление относительно испытываемой плоскости.
  • Для определения прочностных характеристик требуется гладкая поверхность, которая достигается формованием в опалубке из металла.

Важно! Если производится измерение прочности бетона неразрушающим методом с использованием устройств молоткового типа, то образцы должны устанавливаться на идеально ровное основание.

Сравнительная характеристика на примере

В качестве объекта берется колодец, изготовленный из монолитного железобетона. Его глубина составляет 8 м, а радиус – 12 м. Заливка боковых поверхностей велась захватками, которые разделяют конструкцию на 7 ярусов по высоте.

Результаты исследований представлены в таблице ниже.

Неразрушающие методы контроля прочности бетона

Рубрика: Технические науки

Статья просмотрена: 29781 раз

Библиографическое описание:

Бербеков Ж. В. Неразрушающие методы контроля прочности бетона // Молодой ученый. — 2012. — №11. — С. 20-23. — URL https://moluch.ru/archive/46/5697/ (дата обращения: 20.03.2020).

В статье ставится задача рассмотреть методы контроля прочности бетона, при которых последний не теряет свои эксплуатационные качества и не нарушается целостность изделия. Выявлена и обоснована необходимость использования неразрушающих методов контроля прочности, описаны принципы проведения испытаний.

Ключевые фразы: бетон, прочность бетона, неразрушающий контроль, методы испытаний, ударный, скол, ультразвуковой.

Бетон — строительный материал, искусственный каменный материал, получаемый в результате затвердевания рационально подобранной и уплотненной смеси вяжущего вещества (цемент или др.), заполнителей, воды. В ряде случаев может содержать специальные добавки. Смесь этих материалов до затвердевания называют бетонной смесью. Зерна песка и щебня составляют каменную основу бетона. Цемент­ное тесто, образующееся после затворения бетонной смеси водой, обво­лакивает зерна песка и щебня, заполняет промежутки между ними и играет вначале роль смазки заполнителей, придающей подвижность (текучесть) бетонной смеси, а впоследствии, затвердевая, связывает зерна заполнителей, образуя искусственный камень — бетон. Бетон в сочетании со стальной арматурой называют железобетоном.

Неразрушающий контроль — контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации. Неразрушающий контроль особенно важен при создании и эксплуатации жизненно важных изделий, компонентов и конструкций.

При проведении определения прочности бетона с помощью методов неразрушающего контроля необходимо учитывать, что все эти методы являются косвенными. Выделить какой-то один метод нельзя, все они обладают своими достоинствами, недостатками и ограничениями в применении. Поэтому лаборатория оснащена приборами неразрушающего контроля, позволяющими использовать все методы. На начальном этапе существования здания обычно осуществляется контроль соответствия проекту линейных размеров и отсутствия их существенных отклонений от нормативных значений. Для этого применяются линейки, рулетки, нутромеры, скобы, штангенциркули, щупы микроскопы и другой специальный инвентарь. Для замеров отклонений конструкций от вертикали и горизонтали обычно используются нивелиры, теодолиты и поверочные линейки. В существующем здании оценка прочностных показателей конструктивных единиц обычно осуществляется двумя способами. Первый основывается на нагружении конструкции вплоть до ее разрушения, и, таким образом, определяется предельная несущая способность. Однако применение такого метода является, по понятным причинам, экономически нецелесообразным. Гораздо более привлекательны в этом плане неразрушающие методы, которые подразумевают применение для оценки состояния конструкций специальных приборов. В этом случае обработка полученных результатов измерений осуществляется при помощи компьютерных программ, что позволяет получить значительную достоверность конечных характеристик. Наиболее весомым фактором, определяющим метод и средства измерения и контроля, является предельно допустимая погрешность измерений. Так же немаловажно удобство проведения работ, простота обработки результатов. Основой неразрушающих методов являются косвенные характеристики, такие как отпечаток на бетоне; энергия, затраченная на удар; напряжение, приведшее к местному разрушению бетона. Рассмотрим подробнее часто применяемые методы неразрушающего контроля для основных строительных материалов.


Методы местных разрушений

Это самые точные из методов неразрушающего контроля прочности, поскольку для них допускается использовать универсальную градуировочную зависимость, в которой изменяются всего два параметра:

1) крупность заполнителя, которую принимают равной 1,0 при крупности менее 50 мм и 1,1 при крупности более 50 мм;

2) тип бетона – тяжелый либо легкий.

Метод отрыва со скалыванием и скалывания ребра конструкции заключаются в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона в процессе вырывания из него анкерного устройства.

Метод отрыва со скалыванием является единственным неразрушающим методом контроля прочности, для которого в стандартах прописаны градуировочные зависимости. Метод отрыва со скалыванием характеризуется наибольшей точностью, но и наибольшей трудоемкостью испытаний, обусловленной необходимостью подготовки шпуров для установки анкера. К недостаткам метода следует отнести также невозможность использования в густоармированных и тонкостенных конструкциях.

Метод отрыва стальных дисков может быть использован при испытании бетона в густо-армированных конструкциях, когда метод отрыва со скалыванием, а нередко и метод скалывания ребра конструкции (с учетом его ограничений) не могут быть использованы. Он точен и менее трудоемок по сравнению с методом отрыва со скалыванием. К недостаткам метода следует отнести необходимость наклеивания дисков за 3-24 часа до момента испытания (в зависимости от применяемого клея).

Метод скалывания ребра конструкции используется главным образом для контроля линейных элементов (сваи, колонны, ригели, балки, перемычки и т.п.). В отличие от методов отрыва и отрыва со скалыванием, он не требует подготовительных работ. Однако при защитном слое менее 20мм и повреждениях защитного слоя метод неприменим.

Метод отрыва стальных дисков заключается в регистрации напряжения, необходимого для местного разрушения бетона при отрыве от него металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска. В настоящее время метод используется крайне редко. Недостатки методов местных разрушений: повышенная трудоемкость; необходимость определения оси арматуры и глубины ее залегания; невозможность использования в густоармированных участках; частично повреждает поверхность конструкции.


Методы ударного воздействия на бетон

Самый распространенный метод контроля прочности бетона из всех неразрушающих — метод ударного импульса.

Метод ударного импульса заключается в регистрации энергии удара, возникающей в момент соударения бойка с поверхностью бетона.

Приборы, использующие данный метод, отличаются небольшим весом и компактностью, а определение прочности бетона методом ударного импульса является достаточно простой операцией. Результаты измерений выдаются в единицах измерения прочности на сжатие. Также с их помощью можно определять класс бетона, производить измерение прочности под различными углами к поверхности объекта, переносить накопленные данные на компьютер.

Ударные импульсы – это ударные волны малой энергии, генерируемые подшипниками качения вследствие соударений и изменений давления в зоне качения этих подшипников в течение всего срока службы подшипников и распространяющиеся в материалах деталей подшипника, подшипникового узла и прилегающих к ним деталей.

Читать еще:  Как правильно строить дом из газобетона

Основные задачи применения метода ударных импульсов:

получение заблаговременного предупреждения об ухудшении условий смазки подшипников для осуществления своевременной замены смазки по ее фактическому состоянию;

получение заблаговременного предупреждения об ухудшении условий работы подшипников вследствие различных внешних воздействий для принятия своевременных мер по устранению этих воздействий (например, перегрузки, существенного дисбаланса, несоосности и т.п.);

получение заблаговременного предупреждения о появлении дефектов подшипников для планирования своевременных замен подшипников;

сведение к минимуму простоев оборудования;

сведение к минимуму рисков отказов оборудования и обеспечение надежности его работы.

Метод упругого отскока заключается в измерении величины обратного отскока ударника при соударении с поверхностью бетона. Типичным представителем приборов для испытаний по этому методу является склерометр Шмидта и его многочисленные аналоги. Метод упругого отскока, как и метод пластической деформации, основан на измерении поверхностной твердости бетона.

Метод упругого отскока заимствован из практики определения твердости металла. Для испытания бетона применяют приборы, называемые склерометрами, представляющие собой пружинные молотки со сферическими штампами. Молоток устроен так, что система пружин допускает свободный отскок ударника после удара по бетону или по стальной пластинке, прижатой к бетону. Прибор снабжен шкалой со стрелкой, фиксирующей путь ударника при его обратном отскоке. Энергия удара прибором должна быть не менее 0,75 Н-м; радиус сферической части на конце ударника – не менее 5 мм. Проверку (тарировку) приборов проводят после каждых 500 ударов.

При проведении испытаний после каждого удара берут отсчет по шкале прибора (с точностью до одного деления) и записывают в журнал. Требования к подготовке участков для испытаний, к расположению и количеству мест удара, а также к экспериментам для построения тарировочных кривых такие же, как в методе пластической деформации.

Метод пластической деформации основан на измерении размеров отпечатка, который остался на поверхности бетона после соударения с ней стального шарика. Метод устаревший, но до сих пор его используют из-за дешевизны оборудования. Наиболее широко для таких испытаний используют молоток Кашкарова. Принцип действия прост. В молоток вставляется металлический стержень определенной прочности, после чего прибором наносят удар по поверхности бетона. С помощью углового масштаба измеряют размеры отпечатков, получившихся на бетоне и стержне. Прочность бетона определяется из соотношения размеров отпечатков (прочность стержня известна).

Приборы, применяемые для испытания методом пластических деформаций, основаны на вдавливании штампа в поверхность бетона путем удара или статического давления заданной силы. Устройства статического давления применяют ограниченно. Приборами ударного действия служат пружинные и ручные молотки со сферическим штампом (шариком) и приборы маятникового типа с дисковым или шариковым штампом. Твердость стали штампов приборов ударного действия должна быть не менее HRC 60, шероховатость — Ra Литература:


ГОСТ 18105-86 Бетоны. Правила контроля прочности бетона. Государственный стандарт союза ССР. 07.10.2007;

ГОСТ 24452-80 Бетоны. Методы испытаний. Государственный стандарт союза ССР. 07.10.2007;

Баженов Ю. М. Технология бетона: учебное пособие для технологических специальностей строительных вузов. Издательство «Высшая школа». 1979

Баженов Ю.М., Алимов Л.А., Воронин В.В. и др. Технология бетона, строительных изделий и конструкций. — М.: Изд-во АСВ, 2004;

Жуков А.Д. Универсальный справочник прораба. Изд-во НТС «Стройинформ», 2006;

Неразрушающие методы контроля прочности бетона

Для увеличения продолжительности срока службы бетонных конструкций требуется периодическая проверка состояния материала. Основной способ, позволяющий определить степень их надежности – неразрушающий контроль бетона, при котором выявляется прочность, однородность, толщина защитного слоя и иные показатели.

Неразрушающий контроль бетона – определение и методы

Неразрушающим контролем называется выявление характеристик и свойств объектов, изготовленных из бетона, при которых их пригодность к эксплуатации не нарушается. Контроль качества может проводиться как непосредственно на стройплощадке, так и в лабораториях.

Существует множество способов определения свойств, не нарушающих пригодности конструкций, каждый из которых имеет свои достоинства, поэтому выделить и рекомендовать проведение определенного метода невозможно.

Самые простые способы – линейные измерения, проверяющие соответствие элементов сооружения на горизонтальные и вертикальные отклонения. Такие измерения делаются:

  • линейками;
  • рулетками;
  • нивелирами;
  • щупами;
  • теодолитами;
  • штангенциркулями.

Кроме этого существуют более сложные неразрушающие методы контроля прочностных характеристик:

  1. локальные разрушения – отрыв со скалыванием, скалывание ребра и отрыв стальных дисков;
  2. ударное воздействие – упругий отскок, придание ударного импульса, пластическая деформация;
  3. ультразвуковое тестирование.

Точность контрольных измерений зависит от следующих факторов:

  • состав и марка цементной смеси;
  • условия отвердения и схватывания;
  • состав заполнителя;
  • возраст бетона;
  • карбонизация материала – изменения, которым подвергается поверхностный бетонный слой при взаимодействии с углекислым газом;
  • температура и влажность исследуемой поверхности.

Прямые методы контроля

Методы местных разрушений, кроме получения конкретных данных, формируют и корректируют градуировочные зависимости, на которых в дальнейшем строятся косвенные способы контроля, которые будут проводиться на тех же самых участках. Локальные способы применяются как на стадии возведения объектов, так и в процессе их эксплуатации или перед реконструкцией. Эти способы считаются самыми точными среди всех неразрушающих методов, потому что используют простую градуировочную зависимость, учитывающую следующие параметры:

  • разновидность (легкий или тяжелый тип) бетона;
  • крупность заполнителя.

Oтpыв co скaлывaниeм

Операция выполняется в соответствии с правилами, обговоренными в государственных стандартах, и определяет сопротивление бетона в момент отрыва его фрагмента от основания при помощи одного из анкерных устройств:

  • рабочего стержня с анкерной головкой;
  • устройства с разжимным полым конусом и стрежнем, фиксирующим положение приспособления;
  • прибора с рифлеными разжимными щеками и разжимным корпусом.

При выборе приспособления и глубины погружения анкера учитывается размер заполнителя и предполагаемая прочность исследуемого состава. При контроле бетона монолитных конструкций, процедура проводится одновременно на трех участках – в результате проводится исследование трех тестов.

Результаты исследования получаются точными, но сама процедура контроля достаточно трудоемка. Кроме того, отрыв со скалыванием нельзя провести на участках с густым армированием и конструкциях, имеющих тонкие стенки.

Метод скалывания ребра

Заключается в скалывании выступающего бетонного угла, не требует предварительных работ и сверления поверхности. Используется при контроле прочности линейных бетонных сегментов: свай, колонн, ригелей, опорных балок. Однако может использоваться только на конструкциях, толщина защитного слоя которых не меньше 20мм.

Метод отрыва стальных дисков

Для выполнения металлические диски приклеиваются на исследуемую поверхность и отрываются от нее через достаточно длительное время (5-24 часа). При отрыве диска от бетона измеряется напряжение, возникающее при подобном разрушении поверхности.

Данный способ не нашел широкого распространения в России из-за ограниченного температурного режима. Еще один недостаток метода – требуется создание борозды, что понижает производительность исследований. Обычно используется в случаях, когда два предыдущих исследования невозможны.

У всех прямых методов контроля имеются общие недостатки:

  • поверхность частично разрушается;
  • процесс достаточно трудоемкий и длительный;
  • до начала работ требуется определить количество арматуры и глубину ее нахождения.

Косвенные методы контроля

Такие способы проводятся для оценки прочностных характеристик как одного из факторов, определяющих общее состояние сооружения. Но полученные результаты должны использоваться только после определения частной градуировочной зависимости.

Метод упругого отскока

Представляет собой измерение расстояние, на которое отскакивает специальный боек от бетонной поверхности или от стальной пластины, закрепленной на ней. Для проведения испытаний используются достаточно сложные приборы системы КИСИ. Применяются специальные болты, обеспечивающие плотное прилегание стальной пластины, автоматически взведенный маятник, совершающий удар под воздействием пружины и шкала, с помощью которой фиксируется расстояние отскока. Кроме контроля прочности при этом измеряется твердость бетона, для чего прибор оснащается склерометром. Способ упругого отскока позволяет установить зависимость между упругостью и прочностью на сжатие.

Методы ударного импульса и пластической деформации

Метод ударного импульса — самый востребованный и распространенный метод контроля. Фиксирует энергию удара, возникающую при соприкосновении ударного бойка и бетонной поверхности. Такой способ позволяет измерить прочность бетона, установить его класс, упругость по отношению к различным углам наклона воздействия удара.

При этом выявляются зоны, в которых материал имеет неоднородную структуру и недостаточное уплотнение. Показатели вычисляются в результате нескольких замеров. Приборы, используемые для проведения контроля ударным импульсом, имеют компактные размеры, но довольно дороги.

Контроль методом пластической деформации проводится исследованием отпечатка, оставленного на бетоне стальным шариком или стержнем. Приборы, применяемые при контроле, основаны на действии пружины, молотка или маятника. Способ считается устаревшим, но из-за невысокой цены приборов, повсеместно используется.

Ультразвуковой метод

Способ основывается на измерении скорости прохождения через измеряемую конструкцию ультразвуковых волн. Исследования проводятся либо сквозным ультразвуковым прозвучиванием (с установкой датчиков с обратной стороны образца) или поверхностным прозвучиванием (датчики устанавливаются с одной стороны). Ультразвуковой метод контроля позволяет проверять ультразвуком прочность бетона на всем объеме конструкции. Кроме прочности могут измеряться:

  • размеры и глубина трещин;
  • наличие дефектов;
  • общее качество бетонирования.

В процессе производится сквозное или поверхностное прозвучивание. Зависимость между прочностью материала и скоростью прохождения ультразвуковых волн зависит от нескольких факторов, которые необходимо учитывать при проведении измерений:

  • зернистость и состава заполнителя;
  • уплотненность бетона;
  • метода, используемый при подготовке бетонной смеси;
  • колебание расхода цемента;
  • напряженность бетона.

Этот способ доступен для многократного измерения состояния бетонных конструкций любой формы. Это позволяет проводить постоянное контролирование показателей прочности.

К недостаткам метода относятся погрешности, которые могут возникнуть при переводе акустических показателей в прочностные и невозможность исследования высокопрочных бетонов. Нормы ГОСТ и СНиП определяют возможность измерения ультразвуком марок В7,5-В35.

Кроме вышеописанных методов, которые предназначены, прежде всего, для измерения прочности бетона, существуют методы и приборы, исследующие:

  • защитный слой;
  • влажность материала;
  • твердость и другие показатели.

Каждый из приборов и методов предназначен для выполнения определенной функции. В целом получается реальная картина, определяющая качество бетонной конструкции, ее прочность и возможность надежной эксплуатации или необходимость проведения реставрационных работ.

Технологии и приборы для неразрушающего исследования бетона

Определение показателя прочности на усилие сжатия производится путем расчета по формулам и графикам, указанным в ГОСТ 22690-88, а также с использованием графиков прилагаемых производителями приборов. И в ГОСТе, и в графиках производителя указываются градуировочные зависимости между самим параметром прочности и его косвенным значением.

Получение показаний приборами производится при исследовании самой строительной конструкции. Кроме этого, могут проводиться и испытания полученных из конструкции проб. Это необходимо для получения показаний прочности на сложно доступных участках, а также при отрицательных температурах наружной среды. Полученные пробы заливаются бетонным раствором прочностью не менее 50% от прочности пробы. Для этого удобно использовать типовые формы согласно ГОСТ 10180-2012. Порядок размещения проб после заливки указан на рис.1.

Читать еще:  Как сделать бетонную стяжку своими руками

Рис.1. 1 — проба бетона; 2 — наиболее удобная для испытания сторона пробы; 3 — раствор, в котором закреплена проба

Как уже говорилось выше, приборы для проведения неразрушающего контроля имеют собственные графики градуировочной зависимости или базовые настройки для исследований тяжелого бетона средних марок.

Для получения показаний прочности конструкций возможно использование технологий упругого отскока, ударного импульса или пластической деформации. Получение точного значения производится с помощью градуировочной зависимости определенной для бетона, разнящегося с испытываемым своим составом, условиями застывания, возрастом или влажностью. Уточнение значений производится по методике указанной в пр. 9. ГОСТ 22690-88.

Для определения показателей прочности ультразвуковым способом необходима градуировка и корректировка данных полученных прибором согласно ГОСТ 17624 и ГОСТ 24332. В таблице 1 приведены данные расстояний между точками испытаний и количество испытаний для различных методик неразрушающего контроля.

Таблица 1

Наименование метода

Число испытаний на участке

Расстояние между местами испытаний, мм

Расстояние от края конструкции до места испытаний, мм

Толщина конструкции

2 диаметра диска

Отрыв со скалыванием

5 глубин вырыва

Удвоенная глубина установки анкера

Испытание методом упругого отскока

Методика определения прочности конструкции требует расстояния между точками приложения усилий и арматурой не менее 50 мм. Процесс испытания состоит из следующих этапов:

  • Размещение прибора на поверхности конструкции таким образом, чтобы направление усилия шло под углом 90°.
  • Относительно горизонтали прибор располагается таким же образом, как и при испытании образцов для определения градуировки. Если выбирается иная точка установки, то необходимо внесение поправок в соответствии с рекомендациями производителя прибора.
  • Определяется косвенная характеристика.
  • Производится расчет косвенной характеристики на участке конструкции.

Определение прочности на усилие сжатия прибором «Склерометр — Schmidt тип N»

Склерометр – это прибор для замера показаний прочности бетона и бетонного раствора с посредством методики упругого отскока в соответствии с требованиями ГОСТ 22690-88. Границы замеров для данной методики составляют от 5 до 50 МПа (для марок М50 — М500).

Прибор состоит из ударного механизма и стрелки-индикатора, помещенных в корпус цилиндрической формы. Замер проводится приведением в действие ударного механизма. Величина отскока бойка прибора фиксируется стрелкой. Полученный показатель твердости при ударе переводится в показатель прочности с помощью графика, прилагаемого к склерометру. График составлен на основании сопоставления показаний разрушающих измерений на пробах кубической формы путем раздавливания в прессе и испытаний склерометром.

Отрыв со скалыванием

Для проведений испытаний по методике отрыва со скалыванием точки закладки анкеров должны располагаться в зонах минимального напряжения от действующих на конструкцию нагрузок или минимального усилия обжатия предварительно напряженной арматуры.

Процесс замера состоит из следующих этапов:

  • Если лепестковый анкер не был заложен до бетонирования, то проводится бурение отверстия или пробивка шпура размером и глубиной соответствующим требованиям используемого прибора.
  • Анкерное устройство крепится в отверстии или шпуре.
  • Производится соединение прибора и заложенного анкера.
  • Приводится в действие прибор, начиная с минимальной нагрузки на отрыв с последующим увеличением со скоростью от 1,5 до 3 кН/с.
  • После отрыва фиксируются показатели приложенного усилия и минимальная с максимальной глубины скалывания. Точность замера глубин должна составлять не менее 1 мм.

Таким способом определяется точный показатель прочности бетона за исключением случаев:

  • если разница максимальной и минимальной величин скалывания между границами разрушения и поверхностью разнятся более чем в 2 раза;
  • разница между глубинами вырыва и заделки отличается более чем на 5%.

При указанных выше факторах применение итогов допускается только для примерной оценки.

Рекомендуется применение анкерных устройств в соответствии с приложением 2. ГОСТ 22690-88 для которых определена следующая градуировочная зависимость (пр. 5.).

ПРИЛОЖЕНИЕ

В случае применения согласно ГОСТ 22690-88 анкерных устройств, показатель прочности бетона R, МПа определяется по формуле перевода разрушающего усилия (Р) полученного в ходе испытаний к прочности на сжатие:

m1 – коэффициент учета предельного размера большого заполнителя. Принимается равным 1 при крупности до 50 мм, 1.1 – при крупности от 50 мм.;

m2 – коэффициент перевода к прочности на сжатие, находится в зависимости от марки бетона и обстоятельств его затвердевания.

При замерах тяжелого бетона прочностью от 10 МПа и керамзитового бетона прочностью от 5 — 40 МПа показатель m2 принимается равным в соответствии с таблицей 2

Таблица 2

Условие твердения бетона

Тип анкерного устройства

Предполагаемая прочность бетона, МПа

Глубина заделки анкерного устройства, мм

Значение коэффициента m2 для бетона

тяжелого

легкого

Прибор для замера показателя прочности бетона методом отрыва со скалыванием «Оникс-ОС»

Для проведения замеров необходим участок ровной поверхности размером 200х200 мм. В центре участка пробивается или пробуривается (шлямбургом или электромеханическим инструментом) отверстие глубиной 55×10-3 м строго перпендикулярно поверхности конструкции с отклонением не более 1 градуса.

Процесс измерения состоит из следующих этапов:

  • В отверстие соответствующее вышеуказанным параметрам закладывается анкер, состоящий из конуса и трех сегментов.
  • Закручивается гайка-тяга с усилием необходимым для предотвращения проскальзывания анкера.
  • Опора устройства до упора закручивается в рабочий цилиндр.
  • Винт насоса устанавливается в верхнее положение.
  • Устройство подсоединяется к гайке-тяге.
  • Опора вкручивается до плотного соприкосновения с поверхностью конструкции.
  • Анкерное устройство вырывается путем вращения ручки насоса.
  • Определяется разрушающее усилие визуальным методом по показаниям давления на манометре. Точность должна составлять до 2,5 кгс/см2.

Очень важно чтобы при проведении испытаний не производилось проскальзывание анкерной конструкции. Итоги замера не учитываются при проскальзывании более 5х10-3 м. Не допустимо повторное использование отверстия т. к. это может привести к некорректным результатам.

Определение глубины скалывания определяется с помощью двух линеек. Первая располагается ребром на испытуемой поверхности, второй определяется глубина.

Ультразвуковой метод определения прочности бетона

Определение прочностных показателей бетона ультразвуковым методом производится на основании существующих зависимостей между скоростью распространения звуковых волн и прочность материала. Для этого используются специальные градуировочные зависимости между скоростью ультразвука и прочностью или между временем распространения и прочностью. Выбор зависимости основан на технологии ультразвукового сканирования.

Для ультразвукового исследования используются методики сквозного или поверхностного прозвучивания. Для сборных строительных конструкций, таких как колоны, ригели, балки и т. д. применяется сквозная методика ультразвукового сканирования с направлением волн в поперечном направлении. При наличии затруднений со сквозным сканированием в силу конструктивных особенностей, а также для стеновых панелей, ребристых плоских панелей и др. плоских стройконструкций применяется поверхностное сканирование. База прозвучивания устанавливается как и на пробах при установке градуировочной зависимости.

Между поверхностями прибора и стройконструкций обеспечивается плотный акустический контакт с помощью технического вазелина и др. вязких материалов. От выбора методики прозвучивания зависит определение градуировочной зависимости. При сквозном определяется зависимость прочности от скорости прохождения звуковой волны, при поверхностном – зависимость прочности от времени её прохождения. При поверхностном сканировании возможно использование соотношения «скорость-прочность» с применением коэффициента перехода (пр. 3.).

Время прохождения звуковой волны через материал определяется при направлении под прямым углом к уплотнению при расстоянии от 30 и более мм от края исследуемой поверхности строительной конструкции. Также обязательным является направление волны под прямым углом к заложенной в конструкции арматуре при её концентрации в зоне исследований не более 5% от объёма железобетона. Возможно направление волны параллельно арматуре при расстоянии от арматуры не меньше чем 60% от длины базы.

Пульсар 1.2

Рис. 2. Внешний вид прибора Пульсар-1.2: 1 — вход приемника; 2 — выход излучателя

В состав прибора Пульсар (рис. 2.) входит электронный блок и ультразвуковые преобразователи. Последние могут быть раздельными или объединенными в единый блок. Электронный блок оснащен клавиатурой и дисплеем, имеются разъёмы для подключения блока поверхностного сканирования или отдельных ультразвуковых преобразователей для сквозного сканирования. Прибор также оснащен USB-разъёмом для подключения к информационно-вычислительным системам. Доступ к автономным источникам питания производится через крышку в нижней части.

Функции прибора основана на замере времени преодоления ультразвукового импульса через исследуемый материал от излучателя к приемнику. Скорость (V) прохождения волны определяется по формуле:

N – расстояние от излучателя до приемника;

t – время прохождения волны.

Максимально точный показатель определяется как результат обработки данных после шести измерений. Проводится от 1 до 10 измерений с определением среднего значения, а также с учетом двух коэффициентов – вариации и неоднородности.

Скорость прохождения ультразвуковой волны через исследуемый бетон зависит от показателей:

  • плотность и упругость;
  • присутствие либо отсутствие дефектов (трещин и пустот), от которых зависят прочностные свойства и качество материала.

Исходя из этого, сканируя ультразвуком элементы стройконструкций возможно получение информации о:

  • прочностных показателях;
  • монолитности структуры;
  • параметрах модулей плотности и упругости;
  • наличии/отсутствии изъянов, а также об их местонахождении и конфигурации;
  • форме А-сигнала.

Возможно проведение исследований с применением смазки и посредством сухого контакта см. рис. 3.

Рис. 3. Варианты прозвучивания

Прибор «Пульсар» производит фиксацию и визуализацию ультразвуковых импульсов, оснащен цифровыми и аналоговыми фильтрами для отсеивания помех. При работе в режиме осциллографа есть возможность визуального наблюдения за сигналами на дисплее, оператор может самостоятельно устанавливать курсор в положение контрольной метки первого вступления, изменять увеличение измерительного тракта, сдвигать ось времени для изучения импульсов первого вступления и огибающей.

Оформление полученных данных прочности конструкций методами неразрушающего контроля

Итоги проведенных испытаний заносятся в журнал в котором указываются:

  • название стройконструкции, номер исследуемой партии;
  • вид исследуемой прочности и ее необходимый параметр;
  • параметры бетона;
  • наименование применяемой методики исследований, модель используемого прибора и его заводской номер;
  • средний косвенный показатель прочности и должное значение прочности материала;
  • данные об применении корректирующих коэффициентов;
  • итоговые показатели прочности;
  • данные о лицах проводившие испытания и их подпись, дата проведения испытаний.

Для определения прочности ультразвуковым методом необходимо использовать форму, указанную в пр. №8-9, ГОСТ 17624-87 «БЕТОНЫ. УЛЬТРАЗВУКОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ»

Ударно-импульсный метод определения прочности бетона

Установление марки бетона посредством технологии ударно-импульсного исследования производится прибором ИПС-МГ4.01 в соответствии с требованиями ГОСТ 22690-88.

Технические характеристики прибора ИПС-МГ4.01:

Неразрушающий контроль прочности бетона: методы измерения, проверки

Неразрушающий контроль бетона – это группа методов испытаний материала, благодаря которым можно определить его технические характеристики без нарушения целостности и явных деформаций. Определение прочности бетонного монолита является обязательным условием контроля качества бетонных и ЖБ изделий/конструкций в процессе производства.

Неразрушающий контроль прочности бетона дает возможность выявить все самые важные значения, напрямую влияющие на эксплуатационные характеристики монолита и безопасность, длительность службы изделий. На прочность бетонного монолита влияет множество факторов – таких, как качество и пропорции компонентов, соблюдение технологии производства смеси, условия заливки, правильность сушки и т.д.

Читать еще:  Как самому сделать бетон

По прочности бетона устанавливается его марка – к примеру, марка М400 может выдержать максимальную нагрузку в районе 400 кг/см2, марка М500 – 500 кг/см2 и т.д.

Читайте также: про строительство и ремонт.

Обычно испытание бетона на прочность предполагает приложение к застывшему материалу контрольной нагрузки, которая направлена на разрушение целостности структуры. Таким образом определяют, какие максимальные значения нагрузок способен выдержать бетон, для каких условий подходит, в каких конструкциях может использоваться.

Разрушающие методы предполагают отбор проб бетона с обследуемого монолита или приготовление из жидкой смеси контрольных образцов, а потом их разрушение. Кроме того, существуют неразрушающие методы, которые не предусматривают деформации и явной порчи структуры материала.

Основные методы испытания бетона на прочность:

    Разрушающие методы – используют контрольные образцы, которые готовятся и твердеют так же, как и конструкция (либо изымаются из монолита), воздействуют на них разными силами. Это самая точная проверка.
    Неразрушающие косвенные методы – ультразвуковые исследования, методы ударного импульса и упругого отскока. Прочность оценивается косвенно через иные параметры (скорость ультразвука, к примеру), погрешность в полученных данных может составлять 30-50%.
    Неразрушающие прямые методы – это могут быть отрыв металлического анкера (заделанного предварительно в бетон), использование специального оборудования (измерение скалыванием ребра и другие).

При определении прочности бетона используют разнообразные приборы, специальные инструменты, таблицы данных и т.д. Благодаря этому удается получать точную информацию и достоверные результаты исследований.

Неразрушающие технологии контроля прочности бетона

Испытание бетона неразрушающим методом предполагает оценку состояния бетонных конструкций через анализ различных факторов, что влияют на прочность, диаметр арматуры, толщину защитного слоя, влажность, теплопроводность, адгезию и т.д. Особенно актуален данный тип исследований в случаях, когда не известны характеристики бетонного монолита и арматуры, а вот объемы контроля большие.

Указанная группа методов позволяет выполнять исследования как в условиях лаборатории, так и непосредственно на строительной площадке и даже в процессе эксплуатации.

Главные преимущества неразрушающего контроля:

Сохранение целостности конструкции, которая проверяется.
Возможность избежать необходимости организовывать лабораторную оценку непосредственно на строительном объекте.
Полное сохранение эксплуатационных свойств зданий и сооружений.
Достаточно широкая сфера применения.

Несмотря на то, что методов и способов исследования жидкого и застывшего бетона очень много, характеристик также немало, основным свойством и показателем является прочность. Именно от прочности зависят сфера применения и условия эксплуатации, надежность и долговечность конструкции. Так, например, если бетон будет морозостойким и пластичным при заливке, с лучшими разноплановыми характеристиками, но недостаточно прочным для выдерживания проектных нагрузок, здание просто обрушится.

Прочность – определяющий фактор бетона и проверять ее нужно очень тщательно. Все испытания проводят на базе ГОСТов: 22690-2015, 17624-2012 (процедура обследований), 18105-2010 (описаны общие правила проверки). Использование неразрушающих методов предполагает применение механических способов (вдавливание, скол, отрыв, удар) и ультразвукового исследования.

Исследование неразрушающего контроля бетона осуществляется по графику, обязательно в установленном проектом возрасте или же по необходимости. Благодаря исследованиям удается оценить отпускную/распалубочную прочность, сравнить полученные реальные показатели свойств материала с паспортными.

Используемые методы неразрушающего контроля:

    Прямые (местные разрушения) – скалывание ребра, выполнение отрыва со скалыванием, отрыв диска из металла.
    Косвенные – упругий отскок, ударный импульс, использование пластической деформации, а также метод ультразвукового исследования.

Местные разрушения условно относятся к неразрушающим методам. Их главный плюс – достоверность и точность результатов. Испытания регламентирует ГОСТ 22690-2015.

Прямые неразрушающие методы контроля прочности бетона:

Отрыв со скалыванием – оценивается усилие, нужное для разрушения бетона в процессе вырывания из него анкера. Из преимуществ стоит отметить высокий уровень точности, наличие градуировочных зависимостей по ГОСТу, из недостатков – невозможность применять для оценки густоармированных и тонкостенных сооружений, трудоемкость.
Скалывание ребра – измеряется усилие, нужное для скалывания бетона в углу конструкции. Обычно способ используют для выявления прочности линейных сооружений (колонны квадратного сечения, сваи, опорные балки). Главные плюсы метода – простота реализации, отсутствие необходимости в предварительной подготовке, минусы – не применяется для бетона слоем больше 2 сантиметров и поврежденного монолита.
Отрыв металлического диска – фиксируют усилие, разрушающее бетон в момент отрыва от него диска из металла. Метод использовали часто в советское время, сегодня практически не применяют из-за наличия ограничений в плане температурного режима. Достоинства: можно проверять густоармированные конструкции, низкий уровень трудоемкости, недостатки – необходимость в предварительной подготовке (диски клеят на поверхность бетонного монолита за 3-24 часа до начала проверки).

Главные недостатки местных разрушений для измерения прочности бетона – необходимость рассчитывать глубину пролегания арматуры, высокая трудоемкость, частичное повреждение поверхности монолита, что может (пусть и несущественно) влиять на эксплуатационные свойства.

Методы ударно-импульсного воздействия более производительны, но проверяют лишь верхний слой бетона толщиной в 25-30 миллиметров, поэтому их применение ограничено. Поверхность нужно зачистить, удалить поврежденный слой, привести градуированные зависимости приборов в полное соответствие с фактической прочностью монолита по результатам испытаний в прессе контрольных партий.

Для измерения прочности бетона часто используют метод ударного импульса – наиболее распространенный вариант, который дает возможность выявить класс бетона, выполняя исследования под различными углами к поверхности, с учетом упругости и пластичности материала.

Боек со сферическим ударником благодаря пружине ударяется о поверхность бетона, при этом энергия удара тратится на его деформацию, появляется лунка (пластические деформации) и реактивная сила (упругие деформации).

Электромеханический преобразователь механическую энергию выполненного удара превращает в электрический импульс, реальные результаты получают в единицах определения прочности на сжатие. Для исследований используют молоток Шмидта.

Преимущества метода: простота, компактное оборудование, возможность установить класс материала, недостатки – низкая точность из-за определения прочности слоя до 5 сантиметров.

Особенности метода упругого отскока:

В испытаниях используют склерометры – специальные пружинные молотки со сферическими штампами. За счет системы пружин реализуется свободный отскок после удара. Фиксация пути ударника при отскоке осуществляется по шкале со стрелкой.
Прочность материала определяют по градуированным кривым, учитывающим положение молотка, ведь величина отскока напрямую зависит от направления.
Средний показатель исследований считают по данным 5-10 выполненных измерений, между местами ударов расстояние должно быть равно минимум 3 сантиметрам.
Диапазон измерений методов – 5-50 МПа, используются специальные приборы.
Главные преимущества: простота/скорость исследований, возможность оценить прочность густоармированных изделий. Недостатки: определение прочности бетона реализуется в поверхностном слое глубиной 2-3 сантиметра, проверки нужно делать часто и много.

Проверка прочности бетона методом пластической деформации – самый дешевый способ, определяющий твердость поверхности бетона измерением следа, оставленного стальным стержнем/шариком, что встроен в молоток. Молоток располагают в перпендикулярной плоскости поверхности монолита, делают пару ударов. Отпечатки на бетоне и бойке измеряют. Полученные данные фиксируют, ищут среднее значение, по полученному соотношению размеров отпечатков определяют характеристики бетонной поверхности.

Прибор для исследований способом пластических деформаций работает на вдавливании штампа ударом или статическим давлением. Редко применяют устройства статических давлений, чаще используются приборы ударного действия (пружинные/ручные молотки, маятниковые устройства с дисковым/шариковым штампом).

Выдвигаются такие требования: диаметр шарика минимум 1 сантиметр, твердость стали штампов хотя бы HRC60, диск толщиной минимум 1 миллиметр, энергия удара 125 Н и более. Метод простой, подходит для густоармированных конструкций, быстрый, но используется для определения прочности бетона марки максимум М500.

Кроме того, есть и другие методы неразрушающего контроля – инфракрасные, акустические, вибрационные, способ электрического потенциала и т.д. Но они используются реже, базовыми считаются ударный импульс, отрыв со скалыванием, ультразвук.

Самым сложным считается контроль конструкций, на которые воздействуют агрессивные среды (химические в виде кислот, солей, масел, термические в формате высоких/низких температур, атмосферные – карбонизация верхнего слоя).

При проведении обследования простукиванием и визуально, смачиванием раствором фенолфталеина ищут слой с нарушенной структурой, удаляют его на участке для контроля, зачищают наждачной бумагой. Потом определяют прочность способами отбора образцов или местных разрушений. В случае использования ультразвуковых и ударно-импульсных приборов шероховатость поверхности монолита должна быть максимум Ra 25.

Испытание бетона методом неразрушающего контроля ГОСТ 17624-2012

Ультразвуковой метод проверки прочности бетона заключается в регистрации скорости прохождения волн сквозь монолит. Есть сквозное ультразвуковое прозвучивание с установкой датчиков с разных сторон касательно тестируемого образца, а также поверхностное с креплением датчиков по одной стороне. Метод сквозной дает возможность контролировать прочность не только поверхностных, но и глубоких слоев конструкции.

Ультразвуковые приборы контроля используют для дефектоскопии, проверки качества бетонирования, выявления глубины залегания арматуры в бетоне и самого монолита. Устройства дают возможность многократно исследовать разные формы, осуществлять непрерывный контроль снижения/нарастания прочности.

На зависимость между марочной прочностью бетона и скоростью прохождения ультразвука влияют состав и объем наполнителя, расход вяжущего, метод приготовления бетонного раствора, степень его уплотнения. Главный недостаток метода – существенная погрешность в результатах исследования.

С учетом высокой скорости прохождения ультразвука в монолите материала (около 4500 м/с), градуировочная зависимость скорости волны и прочности бетона считается для каждого испытуемого состава предварительно. Использование двух градуированных зависимостей в отношении конкретного бетона и непонятного состава может дать большую ошибку.

Основной особенностью проверки прочности бетона неразрушающим ультразвуковым методом является возможность осуществлять массовые исследования изделий любой формы многократно, эффективно вести непрерывный контроль нарастания/снижения прочности конструкции в онлайн-режиме.

Виды испытаний: таблица значений

Каждая технология неразрушающего контроля прочности бетона предполагает свои диапазоны значений и рекомендованные значения прочности на сжатие. Максимальные значения измерений регламентируют полученными производителями приборов и эмпирическими результатами. Для более удобной интерпретации данных исследований диапазоны и погрешности сводятся в таблицах.

Прочность бетона обычно определяют на участках поверхности монолита нужной площади, на которых отсутствуют видимые повреждения и аморфные отслоения, температура окружающего воздуха должна быть плюсовой.

Заключение

Для определения прочности бетона актуально использование разнообразных неразрушающих методов, которые дают возможность быстро и без серьезных финансовых затрат проверить все нужные значения и не разрушать изделие/конструкцию. Наиболее актуальными методиками сегодня считаются упругий отскок и пластическая деформация.

Все затраты на проверку составляют стоимость покупки прибора. Для проведения вышеуказанных исследований применяют склерометр Шмидта или молоток Кашкарова. Стоимость данных приборов не очень высока, а аренда обходится и того меньше.

При выборе того или иного метода проверки прочности бетона нужно тщательно изучить особенности анализа и интерпретации результата, свести все значения в таблицы и определить искомые значения.

Ссылка на основную публикацию
"
×
×
"
Adblock
detector