""

Электропрогрев бетона электродами технология

Электропрогрев бетона

Когда выдерживание бетона способом термоса не обеспечивает приобретение им заданной критической прочности к концу установленного срока выдерживания, а также при необходимости уменьшения срока выдерживания бетона применяют электропрогрев.

Метод электропрогрева основан на преобразовании электрической энергии в тепловую при помощи металлических электродов, электрических нагревательных приборов (инфракрасных излучателей), термоактивного слоя из опилок или термоактивной опалубки.

При электродном способе конструкция прогревается за счет тепла, выделяющегося непосредственно в теле бетона, а при использовании электрических нагревательных приборов, термоактивной опалубки и термоактивного слоя опилок — за счет передачи тепла бетону от окружающей среды при ее нагреве. В качестве последней могут быть использованы воздух, вода, влажные опилки.

Наиболее широкое распространение получили электродный способ прогрева бетона и прогрев бетонных конструкций инфракрасными лучами. Электропрогрев применяют для конструкций с модулем поверхности от 5 до 20 и для стыков сборных конструкций.

Режимы электропрогрева назначают в зависимости от степени массивности конструкций, вида и активности цемента, требуемой прочности бетона:

из двух стадий: разогрев и изотермический прогрев с обеспечением к моменту выключения тока заданной критической прочности бетона; применяют для конструкций с модулем поверхности более 15;

из трех стадий: разогрев, изотермический прогрев и остывание с обеспечением заданной критической прочности лишь к концу остывания прогретой конструкции; применяют для конструкций с модулем поверхности от 6 до 15;

из двух стадий: разогрев и остывание (электротермос) с обеспечением заданной критической прочности в конце остывания; применяют для конструкций с модулем поверхности менее 6.

Ток включают при температуре бетона не ниже 3—5°С. Температуру в теле бетона поднимают с интенсивностью 8°С в час при прогреве конструкций с Мпот 6 до 2; 10°С в час — с Мп 6 и более; 15°С в час — при прогреве каркасных и тонкостенных конструкций небольшой протяженности (длиной до 6 м).

В целях экономии электроэнергии электропрогрев проводят в наиболее короткие сроки при максимально допустимой для данной конструкции температуре:

Максимально допустимая температура бетона при электропрогреве

Длительность изотермического прогрева зависит от вида примененного цемента, температуры прогрева и заданной критической прочности бетона. Ориентировочно ее можно определять по специальным графикам нарастания прочности с уточнением по результатам испытания контрольных образцов на сжатие.

Скорость остывания бетона по окончании прогрева должна быть минимальной и не превышать 10°С в час для конструкций с Мп более 10 и 5°С в час для конструкции с Мп от 6 до 10.

Для более массивных конструкций скорость остывания, обеспечивающую отсутствие трещин в поверхностных слоях бетона, определяют расчетом.

Остывание наиболее быстро протекает в первые часы по выключении тока, затем интенсивность постепенно замедляется. Чтобы обеспечить одинаковые условия остывания частей конструкций, имеющих различную толщину, тонкие элементы, выступающие углы и другие части, остывающие быстрее основной конструкции, утепляют дополнительно. Опалубку и утепление прогретых конструкций снимают не раньше, чем бетон остынет до температуры 5°С, но прежде чем опалубка примерзнет к бетону.

Для замедления процесса остывания наружных слоев бетона открытые поверхности его после распалубливания укрывают в том случае, если разность температур бетона и наружного воздуха для конструкций с Мп до 5 составляет 20°С, а для конструкций с Мп равным 5 и выше, — более 30°С.

Электродный способ прогрева бетона. При этом способе ток в бетон вводится через электроды, располагаемые внутри или на поверхности уложенного бетона. Соседние или противоположные электроды соединяются с проводами разных фаз, в результате чего между электродами в бетоне возникает электрическое поле.

При помощи электродов бетон прогревают при пониженных (60—127 в), а иногда и повышенных (220—380 в) напряжениях.

Электропрогрев армированных конструкций производят при напряжениях не свыше 127 в; напряжение более 127 в применяют в основном для прогрева неармированных конструкций.

Армированные конструкции допускается прогревать при напряжениях 127—220 в только на основе специально разработанного и утвержденного руководством строительства проекта производства работ. Напряжение 127—220 в допускается применять для отдельно стоящих конструкций, если прогреваемая конструкция (или ее участок) не связана общим армированием с соседними участками, на которых в это время могут производиться работы.

Электропрогрев бетона неармированных конструкций при помощи электродов может производиться при напряжениях до 380 в, если конструкция их обеспечивает невозможность короткого замыкания на арматуру.

При использовании тока напряжением свыше 127 в следует строго соблюдать правила электробезопасности. Электропрогрев или обогрев бетона при напряжении более 380 в категорически запрещается. Электроды бывают внутренние (стержневые и струнные) и поверхностные — (нашивные, полосовые и плавающие).

Стержневые электроды представляют собой короткие прутки из арматурной стали диаметром 6—10 мм, вставляемые в тело бетона перпендикулярно поверхности конструкции. Электроды устанавливают в бетон со стороны открытой поверхности или в отверстия, просверленные в опалубке конструкции. Концы их выступают на 10—15 см из опалубки, к ним присоединяются провода.

Стержневые электроды применяют для прогрева балок, колонн, массивных плит, фундаментных башмаков небольшого объема, боковых поверхностей массивных конструкций (периферийный электропрогрев) и стыков сборных конструкций.

Струнные электроды 1 изготовляют из арматурной стали диаметром 6—10 мм. Устанавливают их в конструкцию перед бетонированием параллельно ее продольной оси отдельными звеньями длиной 2,5—3,5 м, концы 3 загибают под прямым углом, выводят наружу и подключают к различным фазам электрической цепи. При прохождении тока между электродами разных фаз бетон нагревается.

Применяют такие электроды для прогрева слабоармированных стенок, балок, колонн, плит толщиной более 20 см с одиночной арматурой, а также при прогреве ленточных фундаментов небольшого сечения, для периферийного прогрева массивных конструкций и поверхностей бетона, соприкасающихся с промерзшим основанием.

Нашивные электроды изготовляют из круглой стали диаметром 6 мм пли полосовой толщиной 1,5—2 мм и шириной 30— 60 мм. Их укрепляют через 10—20 см на внутренней стороне опалубки, затем концы загибают и выводят наружу для присоединения к ним проводов.

Нашивные электроды применяют для прогрева слабоармированных стенок, ленточных фундаментов, балок, армированных плоскими сварными каркасами с защитным слоем не менее 5 см.

Полосовые электроды изготовляют из полосовой стали толщиной 3—4 мм. Применяют их главным образом при прогреве плит перекрытий и других горизонтальных элементов, а также бетона, соприкасающегося с мерзлым грунтом. Для удобства укладки и включения, а также для лучшего соприкосновения с бетоном полосовые электроды 2 монтируют на утепленных опилками 3 инвентарных щитах 1 (электродных панелях), укладываемых сверху на бетон. Электродные панели устанавливают на открытую поверхность немедленно после окончания бетонирования конструкции.

Плавающие электроды изготовляют из арматурной стали диаметром 6—12 мм и вставляют в бетон на глубину 3—4 см сразу после его укладки. Их применяют главным образом при прогреве полов, плит и периферийном прогреве верхних, не имеющих опалубки поверхностей массивных конструкцийreturn_links(); ?>.

Электроды независимо от их вида должны обеспечивать равномерность прогрева элемента и получение во всех его точках одинаковой прочности, поэтому перегрев бетона вблизи электрода не желателен. Во избежание перегрева расстояния между электродами должны быть не менее 20—25 см при напряжении до 65 в и 30—40 см при более высоких напряжениях (до 106 в).

Опасность местных перегревов уменьшают, применяя групповой способ размещения электродов, при котором в каждую фазу питающей сети включают не один, а группу электродов. Способ расстановки электродов и расстояние между ними задают проектом.

При установке электродов нельзя допускать их смещения и соприкосновения с арматурой, так как если с арматурой соприкоснутся два электрода разных фаз, произойдет короткое замыкание, т. е. сила тока возрастет сразу до очень большой величины, при которой могут расплавиться и перегореть провода и трансформатор.

Для обеспечения равномерного прогрева необходимо соблюдать осторожность во время выгрузки и укладки бетонной смеси, чтобы не сместить электроды с первоначального положения и не допустить соприкасания с арматурой.

Слой бетона между электродами и арматурой при напряжении в начале прогрева 52; 65; 87; 106 и 220 в должен быть соответственно не менее 5, 7; 10; 15 и 50 см. При уменьшении толщины этого слоя неизбежен местный перегрев бетона. В случае невозможности выдержать указанные расстояния необходимо ближайшие к арматуре участки электродов (10—15 см) изолировать: надеть на электрод эбонитовые трубки или обернуть его двумя слоями толя.

Рабочие швы при бетонировании размещают так, чтобы расстояние от шва до ряда электродов не превышало 100 мм.

Открытые поверхности по окончании бетонирования и установки электродов укрывают утепляющими материалами. Прогревать бетон с неукрытыми поверхностями не допускается.

В конструкциях с Мп менее 6, выдерживаемых способом термоса, электропрогреву подвергают лишь внешние периферийные слои, что ускоряет твердение бетона и предотвращает преждевременное его охлаждение в наружных слоях. Электроды укладывают на поверхность или втапливают в наружные слои бетона. Для уменьшения теплопотерь открытые поверхности бетона утепляют. Расстояние между электродами в углах конструкции должно быть 200—250 мм, на остальных участках — 300—350 мм. Предельная температура нагревания бетона — не выше 40°С. Продолжительность и режим прогрева устанавливает лаборатория.

Читать еще:  Утепление цоколя в частном доме снаружи

Прогрев бетона инфракрасными лучами. Сущность метода заключается в передаче бетону тепла в виде лучистой энергии, чем достигается ускоренное его твердение. Теплоносителем являются инфракрасные лучи, которые представляют собой электромагнитные волны, испускаемые нагретыми телами и передающие тепло бетону.

Генераторами инфракрасных лучей могут быть различные нагревательные устройства, обогреваемые электрическим током или иным источником тепла, например газом.

В качестве источника инфракрасных лучей могут быть использованы работающие от общей электросети специальные (зеркальные) лампы теплоизлучения, металлические нагреватели, керамические панели, на которых навита тонкая нихромовая проволока. Регулируя мощность генераторов инфракрасных лучей и их расстояние от поверхности обогреваемого бетона, можно изменять интенсивность нагрева бетона, температуру изотермического прогрева, а также интенсивность охлаждения бетона к концу тепловой обработки. Данный метод отличается простотой по сравнению с электродным способом прогрева.

Прогрев инфракрасными лучами можно применять в следующих случаях:

при изготовлении тонкостенных (толщиной не более 25 см) сборных железобетонных конструкций и заделке стыков между ними;

для ускорения твердения замоноличивающего (штрабного) бетона при установке в зимних условиях металлических закладных частей и анкерных устройств;

при подготовке блоков к бетонированию (прогрев промерзших углов и поверхностей); при возведении высоких незначительной толщины насыщенных арматурой конструкций.

При прогреве инфракрасными лучами следует тщательно защищать прогреваемый бетон от испарения из него влаги.

Прогрев бетона термоактивными опилками.

Сущность метода прогрева термоактивными опилками заключается в следующем. В смоченный слабым соляным раствором слой опилок закладывают электроды. Опилками утепляют либо горизонтальную поверхность, либо ими заполняют двойную опалубку, так называемую термоактивную опалубку. Этот способ трудоемкий и пожароопасный, поэтому им пользуются лишь для отдельных мелких или особо срочных работ, когда другие способы обогрева бетона по местным условиям не могут быть применены.

Особенности прогрева бетона в стыках сборных конструкций. Стыки сборных железобетонных конструкций, не воспринимающие расчетных нагрузок и не имеющие открытой стальной арматуры и закладных деталей, замоноличивают в зимнее время бетонными смесями и растворами, твердеющими при отрицательных температурах.

Стыки, несущие расчетные нагрузки, перед замоноличиванием бетонной смесью или раствором прогревают до положительной температуры, а затем укладывают смесь или раствор, которые также прогревают.

Прогревать стыки и стыкуемые элементы можно электрическим током, горячей водой или паром, инфракрасными лучами.

Если для бетонирования стыка применяют металлическую опалубку, к ней снаружи прикрепляют металлический кожух, устанавливаемый с зазором, внутри которого размещают источники тепла в виде проволочных спиралей. Кожух изолируют от источников тепла слоем минеральной ваты толщиной 50 мм.

При замоноличивании стыка колонны с фундаментом стаканного типа стык прогревают горячей водой, которую наливают в полость стакана. Воду в стакане фундамента 3 непрерывно подогревают или паром, пускаемым в него по шлангу, или специальной кристаллизационной грелкой, или трубчатыми электронагревателями 2, погружаемыми в воду. Трубчатые электронагреватели представляют собой спирали из нихромовой проволоки, помещенные в металлические трубки и изолированные от них специальной пастой.

Электропрогрев бетона в зимнее время: схемы и способы

Для того, чтобы предотвратить пагубное воздействие мороза и произвести бетонирование в зимнее время, надо создать для бетона условия, при которых процесс его твердения будет постоянным и равномерным. Этого можно достичь только в том случае, если температура бетонной массы во время ее затвердевания будет близка к +20 0 С, а этого можно добиться только в случае принудительного электропрогрева бетона.

Самым распространенным методом подогрева бетона, во время заливки в зимнее время, является электропрогрев, который используется в тех случаях, когда обычного утепления объекта не достаточно. Именно о нем мы сегодня и поговорим.

Прогреть бетон в зимнее время можно несколькими методами:

1. Прогрев бетона электродами.
2. Электропрогрев бетона проводом ПНСВ
3. Электропрогрев опалубки
4. Подогрев индукционным методом
5. Инфракрасным излучением

Стоит отметить, что независимо от способа, электропрогрев бетона должен сопровождаться его утеплением или хотя бы созданием термоса вокруг объекта. В противном случае, равномерного прогрева может не получиться, а это не очень хорошо скажется на его конечной прочности.

Прогрев бетона электродами – схема подключения

Прогрев бетона электродами – самый распространенный метод электропрогрева в зимнее время. Это связано, в первую очередь, с простотой и дешевизной, потому что, в отдельных случаях, нет необходимости тратиться на нагревательные провода, дорогие трансформаторы и т.п.

Принцип действия такого способа электропрогрева основывается на физических свойствах электрического тока, который при прохождении через материал выделяет определенное количество теплоты.

В данном случае, проводимым материалом является сам бетон, другими словами, когда ток проходит через водосодержащий бетон, он в это время его нагревает.

Внимание! Если бетонная конструкция содержит в себе арматурный каркас, не рекомендуется подавать на электроды напряжение более 127 В. В случае отсутствия металлического каркаса, можно использовать как 220 В, так и 380 В. Большее напряжение применять не рекомендуют.

Существует несколько видов электродов для прогрева бетона в зимнее время:

Электроды стержневые. Для их создания используется металлическая арматура d 8 – 12 мм. Такие стержни вставляются в бетон на небольшом расстоянии и подключаются к разным фазам, как на схеме. В случаях сложных конструкций, такие электроды для прогрева бетона будут незаменимы. Стеклопластиковая арматура для таких целей не подойдет, потому что она является диэлектриком.

Электроды в виде пластин. Иногда их называют пластинчатыми электродами. Схема подключения такого подогрева очень проста – пластины располагаются на обоих противоположных внутренних сторонах опалубки и подключаются к разным фазам, а проходящий ток будет нагревать бетон. Вместо широких пластин иногда используют узкие полосы, принцип действия этих полос — такой же.

Электроды струнные. Используются при заливке колонн, балок, столбов и похожих конструкций. Принцип действия все тот же, струны подключаются к разным фазам, тем самым нагревая бетон в зимнее время.

Прогрев бетона электродами необходимо осуществлять только переменным током, так как постоянный ток, проходящий через воду, способствует ее электролизу. Другими словами — вода будет химически разлагаться, не осуществив своей основной функции в процессе твердения.

Электропрогрев бетона проводом ПНСВ: технология и схема

Если прогрев бетона электродами – один из самых дешевых вариантов электропрогрева в зимнее время, то, в свою очередь, прогрев проводом ПНСВ – один из самых эффективных.

Это связано с тем, что в качестве нагревателя используется не сам бетон, а нагревательный провод ПНСВ, который выделяет тепло при прохождении через него тока. С помощью такого провода, намного проще добиться плавного повышения температуры бетона, да и вообще такой провод будет вести предсказуемо, что облегчит необходимое постепенное увеличение температуры в зимнее время.

Стоит сказать о самом проводе ПНСВ (П – провод, Н – нагревательный, С — стальная жила, В — ПВХ изоляция). Бывает различного сечения 1.2, 2, 3. В зависимости от использованного сечения выбирается его количество на 1 метр кубический бетонной смеси.

Технология электропрогрева бетона проводом ПНСВ, также, как и схема подключения, очень проста. Провод без натяжки пропускается вдоль арматурного каркаса, на нем же и крепится. Крепить необходимо так, чтобы при подаче бетона в траншею или опалубку не повредить его.

При электропрогреве бетона проводом ПНСВ в зимнее время, его укладывают так, чтобы он не касался земли, опалубки, а также не выходил за пределы самого бетона. Длина используемого провода полностью зависит от его толщины, сопротивления, ожидаемой минусовой температуры, а подаваемое напряжение, с помощью специального трансформатора составляет, как правило, около 50 В.

Так же существуют кабели, которые не предусматривают использование трансформатора. Их использование позволит немного сэкономить. Он очень удобен в использовании, но все же у обычного провода ПНСВ более широкие возможности для применения.

Электропрогрев опалубки в зимнее время

Этот способ электропрогрева подразумевает изготовление опалубки с заранее заложенными нагревательными элементами в ней, которые при нагреве будут отдавать так нужное бетону тепло. Напоминает прогрев бетона пластинчатыми электродами, только обогрев осуществляется не на внутренней стороне опалубки, а внутри нее, либо снаружи.

Электропрогрев опалубки в зимнее время не так часто используется, учитывая сложность конструкции, тем более, что при заливки фундамента, например, опалубка соприкасается не со всей бетонной конструкцией. Таким образом, нагреваться будет лишь часть бетона.

Индукционный и инфракрасный способы подогрева бетона

Индукционный способ подогрева бетона используется крайне редко, да и то, в основном, в балках, ригелях, прогонах, из-за сложности его устройства.

Основывается он на том, что обмотанный изолированный провод вокруг стального стержня арматуры, будет создавать индукцию и нагревать саму арматуру.

Электропрогрев бетона в зимний период с помощью инфракрасных лучей основывается на способности таких лучей нагревать поверхность непрозрачных объектов, с последующей передачей тепла по всему объему. При использовании такого способа необходимо предусмотреть окутывание бетонной конструкции прозрачной пленкой, которая будет пропускать лучи сквозь себя, не давая теплу так быстро уходить.

Читать еще:  Штукатурка стен расход материала на м2

Достоинством такого способа является то, что не обязательно использование специальных трансформаторов. Недостаток – в том, что инфракрасное излучение не способно осуществить равномерный обогрев больших конструкций. Этот способ годится только для тонких конструкций.

Не забывайте о том, что независимо от способа электропрогрева бетона в зимнее время, необходимо постоянно следить за его температурой, потому что слишком высокая (более 50 0 С) – так же опасна для него, как и слишком низкая. Скорость нагрева бетона, так же как скорость остывания, не должна превышать 10 0 С в час.

Описание технологии прогрева бетона электродами и практические советы

Чтобы исключить кристаллизацию воды, входящей в состав бетонного раствора, необходимо поддерживать определенную температуру залитой массы. Дело в том, что вяжущее (цемент) вступает в реакцию именно с жидкостью, а не со льдом. А так как окончательное отвердевание бетона происходит в течение длительного времени (до 4 – 5 недель, в зависимости от особенностей производства работ и состава смеси), то его термообработка осуществляется постоянно, до полной готовности сооружаемой конструкции.

Понятно, что прогрев необходим только в холодное время года. Это позволяет вести работы в любой сезон, независимо от температуры окружающего воздуха. Существует много методик, но, пожалуй, самой распространенной является прогрев бетонной смеси электродами. Такие проводники эл/тока отличаются формой, размерами и спецификой размещения.

Но технология и принцип их действия остается неизменным – бетон разогревается эл/полем, которое образуется между электродами при подаче на них напряжения. Раствор становится элементом токопроводящей цепи (со своим внутренним сопротивлением), в котором энергия электрическая трансформируется в тепловую. Регулируя номинал напряжения, можно добиться требуемой температуры прогрева. В зависимости от особенностей «обрабатываемой» конструкции, подбирается оптимальный вариант данных элементов.

Разновидности электродов

Стержневые

В качестве таковых чаще всего используется арматурный пруток хотя можно устанавливать и узкие полосы металла (композитная арматура, понятное дело, не подойдет, а вот для армирования — то что надо). Его длина должна быть несколько большей толщины заливки (для включения в цепь), а сечение выбирается исходя из ее конструктивных особенностей и плана размещения электродов (как правило, для частного домостроения не более 10 мм). Чтобы арматура легче входила в раствор, один ее конец заостряется.

Стержневые электроды позволяют прогреть «заливку» с конфигурацией любой сложности и формы, поэтому используются чаще всего, особенно при индивидуальном строительстве. Их располагают перпендикулярно продольной оси конструкции. Причем так, чтобы они не соприкасались с прутьями армирующего каркаса.

По сути, это разновидность тех же стержневых, но расположение – вдоль оси опалубки. Применяются при прогреве конструкций с малым сечением и большой длиной (балки, колонны и ряд других). Для упрощения присоединения проводов торчащие из опалубки края изгибаются верх (буквой «Г»).

В ряде случаев можно в качестве электродов использовать продольные прутья смонтированного в опалубке металлического каркаса. Но при таком способе прогрева резко увеличивается энергопотребление, поэтому и используется он реже. При этом соблюдаются особые меры предосторожности.

Представляют собой куски железных полос (20 – 50 мм, толщиной 3), которые укладываются поверх залитого раствора. Такой прогрев применяется для заливки малой толщины (массивная стяжка, плита и тому подобное), при этом все элементы размещаются на одной стороне конструкции.

Пластинчатые

Располагаются с противоположных сторон заливки, с внутренней стороны опалубки. Их габариты выбираются в соответствии с ее параметрами. Естественно, что устанавливаются они парами, количество которых и расстановка определяются индивидуально для каждой конструкции.

Виды прогрева

Сквозной (внутренний, погружной)

Применяется для конструкций, имеющих большую толщину или сложную форму. Из названия понятно, что электроды размещаются внутри залитой массы раствора. Общее правило – электроды устанавливаются на расстоянии не менее 3 см от элемента опалубки.

Периферийный (поверхностный, нашивной)

Под полосы устанавливается подкладка. На практике для этого чаще всего берутся куски рубероида, что позволяет такие электроды легко снимать и использовать многократно.

Общее правило

Если в опалубку установлен металлический каркас, то использовать напряжение более 127 В ЗАПРЕЩЕНО . Для конструкций неармированных оно может быть не более 380 В.

Что учесть при прогреве бетона

  • По мере отвердевания залитой массы изменяется ее эл/сопротивление, так как происходит испарение влаги. Следовательно, необходимо систематически корректировать силу подаваемого тока, поэтому в схему обязательно должен быть включен элемент регулировки (например, реостат, трансформатор с несколькими выходами).
  • Поверхность конструкции, подлежащей прогреву, должна быть укрыта материалами, снижающими теплопотери. Это могут быть опилки, маты, пленка п/э, рубероид и тому подобное. В противном случае сам процесс прогрева теряет смысл.
  • При стержневом методе нужно соблюдать одинаковые расстояния между электродами как в одном ряду, так и в соседних. Это обеспечит равномерность загрузки «линий» и исключит перекос фаз.
  • Снижения энергозатрат можно добиться введением в состав раствора специальных добавок-пластификаторов, ускоряющих процесс отвердевания бетона.
  • Специалисты не рекомендуют применять электродный прогрев для мелких конструкций. Для этого существуют другие методики.
  • В качестве «питания» нельзя использовать источник постоянного тока, так как в этом случае не избежать электролиза жидкости.
  • При небольших объемах заливки в качестве источника напряжения можно использовать сварочные трансформаторы.
  • Единой рекомендации по размещению электродов на (в) заливке раствора нет. Схема определяется индивидуально и зависит от внешних условий, параметров опалубки, марки цемента и ряда других факторов.
  • Через определенные временные промежутки (зависят от специфики работ) делается замер температуры. Для этого проделываются специальные «шурфы».
  • ЗАПРЕЩАЕТСЯ. При использовании прутьев арматурного каркаса в качестве электродов работать с напряжением свыше 60 В. В исключительных случаях (более этого номинала) – только при соблюдении дополнительных мер и локально (на отдельных сегментах конструкции).

Для получения из раствора качественного искусственного камня рекомендуется комплексный обогрев массы, сочетающий несколько методик, в том числе, и «пассивную» («термос»).

Прогрев бетона зимой: электроды, КТПО, провод ПНСВ, технология

Схватывание бетона происходит при участии воды. Но в зимнее время вся влага в растворе замерзает, делая гидратацию невозможной. Чтобы и в морозы не приостанавливать строительство, на участке организовывают обогрев бетона. Вариантов прогрева разработано немало, и каждая технология находит свое применение.

На чем основывается выбор?

Каким способом подогревать зимой бетонные конструкции, зависит от ряда параметров:

1. Погодные условия. При температуре не ниже -15 °С обогрев нагревательными проводами можно заменить методом «теплой» опалубки.

2. Класс бетона – от него зависит необходимый срок теплового воздействия до получения надежных характеристик конструкций, залитых зимой. Бетон вплоть до класса В10 должен успеть набрать половину заявленной прочности, прежде чем можно будет закончить прогрев, классы с В12,5 по В25 – около 40%, крепче В25 – около 30%.

3. Размеры ЖБИ. Для массивных фундаментов рекомендуется электропрогрев бетона электродами или проводами ПНСВ, плюс сохранение набранной температуры «термосом».

4. Толщина заливки. При незначительных габаритах отдельных элементов армированной конструкции возможно применение индукционного нагрева.

Чтобы получить монолит заданного качества и оптимизировать затраты на обогрев бетона, рекомендуется для каждого конкретного случая комбинировать различные технологии.

Метод электродов

Наиболее часто применяемая технология, основанная на свойстве проводников электрического тока разогреваться. Влажный бетонный раствор тоже превращается в своеобразный проводник, если в нем разместить запитанные электроды. Чтобы «цепь» заработала, их необходимо подсоединить к разным фазам источника переменного тока мощностью 60-127 В.

Не используйте метод под напряжением свыше 127 В, если работаете с ЖБИ. Бетон с металлической арматурой включать в цепь можно только после профессиональной разработки проекта.

Технология прогрева бетона электродами требует предварительных расчетов для каждой конструкции. От ее особенностей будет зависеть напряжение подаваемого переменного тока, схема расстановки электродов и даже их вид.

  • Стержневые электроды – металлические пруты небольшого диаметра (от 6 до 12 мм). Используются на удаленных участках особо крупных конструкций, а также для сложных форм (стыков, колонн). При размещении стержневых электродов нужно следить, чтобы они не располагались к опалубке ближе, чем на 3 см.
  • Струнные – длинная стальная проволока диаметром 6-10 мм. Предназначены для участков большой протяженности. Этот способ предпочтителен, если прогрев бетонной смеси электродами выполняется при контакте заливки с уже замерзшим грунтом.
  • Поверхностные – особый тип электродов, роль которых выполняют стальные пластины или полосы шириной в 4-8 см. Проводники крепятся непосредственно к опалубке с оставлением одного свободного конца для подключения к источнику питания. В отличие от погружных электродов поверхностные не контактируют с раствором, так как отделены от него слоем рубероида.

Металлические полосы обеспечивают прогрев бетона не глубже, чем на половину расстояния от одного электрода до другого. Это тепло достает и до внутренних слоев, но там процессы протекают не так интенсивно. А вот разнофазные пластины могут нагревать весь объем, если он не слишком большой.

Основное достоинство метода прогрева электродами – возможность поддержания оптимальной температуры бетона в конструкциях любой толщины и формы.

Особенности различных способов

1. Использование нагревательных проводов.

Читать еще:  Чем обшить бетонную лестницу в доме

Тот же электропрогрев бетона, но в отличие от электродного метода, увеличение температуры в монолите обеспечивают уложенные в массу изолированные провода. Они сами нагреваются в процессе работы, а раствору передают только тепловую энергию.

Марки нагревающих элементов:

1. Чаще всего в зимнее время используется электропровод марки ПНСВ от 1,2 до 3 мм в диаметре.

При этом нужно учитывать, что ПНСВ не должен во время работы находиться на воздухе, иначе его изоляция просто оплавится. Отсюда и особенности технологии прогрева – применение так называемых холодных концов, подключенных в местах выхода ПНСВ из бетона. Их роль исполняют короткие установочные провода типа АПВ-2,5 или АПВ-4 с алюминиевой жилой.

Схема прогрева проводом ПНСВ 1,2 при его подключении к трансформатору может быть одно- или трехфазной. Главное, чтобы линии отстояли друг от друга минимум на 15 мм, а сила тока не превышала 15 А. Длина обогреваемых секций подбирается вдвое меньше, чем значение напряжения на трансформаторе.

2. Применение кабелей КДБС или ВЕТ позволяет полностью исключить из технологии трансформатор для прогрева бетона.

К такому методу прибегают, когда нет возможности обеспечить станции питание в 380 В или использовать требуемое количество понижающих трансформаторов на объекте. ВЕТ-кабели могут работать от бытовой электросети, на концах они снабжаются соединительными муфтами, что весьма удобно при укладке. Правда, стоит такой провод дороже, чем ПНСВ.

Подключение производится к понижающему трансформатору, выдающему со второй обмотки 75 или 36 В. Схема укладки провода ВЕТ не отличается от аналогичной для ПНСВ. При этом важно подобрать оборудование, предусматривающее плавную регулировку силы тока. Это позволит поддерживать нормальную температуру в монолитной конструкции.

Как вариант для частного строительства, подойдет обычный сварочный аппарат. К профессиональному оборудованию относятся трансформаторные станции, которые обеспечивают прогрев до 30 кубов: КТПТО-80/86, серия трансформаторов СПБ либо сухая станция ТСДЗ-63.

Прогрев с использованием проводов позволяет сократить время набора 70%-ной прочности до нескольких дней. При такой высокой эффективности метод выгодно отличается экономичностью.

3. Греющая опалубка.

Контактный прогрев бетона предпочтительно использовать на объектах быстрого возведения. Термоактивная опалубка широко применяется для строительства монолитных домов, но раствор должен иметь высокую скорость застывания. Эта технология довольно требовательна к температуре смеси и окружающей среды: промерзший грунт на глубину 30-50 см и сам состав должны быть прогреты до +15 °С.

4. Индукционный метод.

Отлично подходит для изготовления бетонных свай и колонн. Повышение температуры внутри опалубки происходит за счет воздействия электромагнитного поля, создаваемого внешними витками провода. Вся конструкция превращается в своеобразную индукционную катушку, разогревающую металлическую арматуру. А та в свою очередь осуществляет прогрев раствора изнутри. Достоинства метода – равномерный прогрев и возможность производить предварительный разогрев опалубки и армирующих стержней еще до заливки.

5. Тепловые излучатели.

Относительно недорогой и наименее энергозатратный способ – прогрев тепловыми пушками, ИК-излучателями и другими внешними электрообогревателями. Его плюсом и одновременно недостатком является локальное воздействие на заливку. Поэтому сфера применения этой технологии ограничивается ремонтными работами, заделкой стыков и изготовлением малых форм. При этом внешний обогрев не будет достаточно эффективен, если обрабатываемую часть конструкции не оградить от внешних условий временным пологом. Достоинства: минимум аппаратуры и кабельной продукции, дешевизна и относительно невысокие энергозатраты.

Самый дорогой и энергоемкий прогрев бетона в зимнее время применяется только в промышленном строительстве. Смысл технологии заключается в том, что бетон заливается в сложную двухстенную опалубку, через которую подается горячий пар. Он обволакивает бетонную поверхность, образуя «паровую рубашку». Это обеспечивает и равномерный прогрев конструкции, и подачу влаги, необходимой для гидратации.

Несмотря на всю сложность организации прогрева, этот способ является наиболее эффективным. А для сокращения расходов в сам бетонный раствор вводятся пластифицирующие добавки, ускоряющие процесс твердения.

Существует и пассивный метод, когда вокруг конструкции создается термос из теплоизолирующих матов. Но он сам по себе неэффективен – его уместно использовать только в качестве дополнительной меры вместе с другими способами.

Воздействии тока на твердение бетона

В процессе осуществлении бетонных работ при отрицательных температурах воздуха одной из основных проблем является кристаллизация воды и, соответственно, нарушение процесса образования монолитного блока. Одним из основных методов борьбы с такими явлениями считается электропрогрев. Он позволяет интенсифицировать процесс твердения бетона, обеспечив необходимые температурные условия непосредственно на строительной площадке или производственном предприятии.

При этом в литературе встречаются рекомендации по предпочтительному использованию для этих целей постоянного тока, что противоречит общераспространенной практике бетонирования, в которой преимущественно используется переменный ток. В этой статье мы рассмотрим преимущества и недостатки каждого из методов на основании данных опытно-промышленных исследований.

Оглавление

Особенности использования электроподогрева в зимний период

Технология электропрогрева заключается во включении свежеуложенной бетонной смеси в электрическую цепь в качестве активного сопротивления. При этом обеспечивается заданная температура смеси, а гидратация и структурообразование бетона протекает в условиях воздействия ряда физико-химических процессов, включая электрическое и электромагнитное воздействие.

Рисунок 1. Схемы электропрогрева бетонной конструкции электродами

К основным явлениям, которые рассматриваются в качестве факторов ускоренного твердения бетона, относят:

  • температура — является основным моментом, который напрямую влияет на процесс. Гидратация цемента происходит с выделением тепла экзотермических реакций (в начале процесса схватывания тепловыделение минимально, а в конце — достигает максимума). Условия окружающей среды являются определяющим фактором: сокращение времени схватывания наблюдается при росте температуры до 30°С, а затем наблюдается обратный эффект;
  • электрофорез — электрокинетическое явление, сопровождающееся перемещением дисперсных частиц в жидкой среде при пропускании через нее постоянного электротока;
  • электроосмос — перемещение жидкости между электродами при пропускании постоянного электротока через бетонную смесь;
  • электролиз — выделение на электроде контактной фазы из кислорода и водорода, происходящее вследствие разложения воды под действием постоянного тока.

Рисунок 2. Электропрогревание бетонной смеси

Три последних фактора в производственных условиях оказывают незначительный эффект, однако в ряде источников им уделяется повышенное внимание. В частности, в Московской ветеринарной академии предложен метод обработки бетона, арболита и аналогичных смесей на цементной основе за счет воздействия постоянного электрического тока знакопеременных импульсов. Указывается, что явления электроосмоса, электролиза и электрофореза при таком варианте технологии происходят более интенсивно, нежели при воздействии переменного тока промышленной частоты.

Это, в свою очередь, вызывает ускоренное диспергирование цементных частиц, способствует повышению реакционной способности компонентов бетона, определяет более полную гидратацию цемента и повышает равномерность распределения цементного клея между частицами заполнителя и непрогидратированными зернами цемента. Авторы этой работы утверждают, что распалубочная прочность бетона при такой обработке достигается уже спустя 1–3 часа после укладки .

Рисунок 3. Структура цементного камня при схватывании бетона при разном водоцементном соотношении и степени гидратации

За счет электроподогрева при отрицательных температурах бетон в проектные сроки набирает марочную прочность без ухудшения прочих эксплуатационных и физико-механических свойств, что позволяет сократить сроки сдачи конструкции под нагрузку. Основным фактором, определяющим эффективность этого процесса, считается температура. В некоторых исследованиях ошибочно связывают ускорение процесса твердения с явлениями электроосмоса, электролиза и электрофореза.

Сравнение обработки бетона постоянным и переменным током

В ряде исследований обоснована несостоятельность гипотезы об ускорении структурообразования в бетоне при пропускании постоянного тока за счет интенсификации явлений электроосмоса, электролиза и электрофореза. В частности, НИИЖБ совместно с представителями Московского лесотехнического института и Московской ветеринарной академии провели производственный эксперимент по трамбованию арболитовых стеновых панелей 1,8х0,9х0,2 м в вертикальных формах с применением в электроподогрева.

Рисунок 4. Трехмерная модель стеновых панелей

Для получения сравнительной базы были исследованы два следующих варианта технологии:

  1. Панель №1 твердела под воздействием постоянного тока знакопеременных импульсов (питание от генератора П—91 50 кВА). Время изменения направления токовых импульсов составляло 5 мин с интервалом 1 мин. Рабочее напряжение выбирали таким образом, чтобы обеспечить плотность тока на электродах 40 А/м 2 .
  2. Панель №2 твердела под воздействием переменного тока промышленной частоты (питание от сварочного трансформатора ТД—500 У2). Напряжение регулировалось таким образом, чтобы температурный режим прогрева совпадал с условиями твердения панели №1.

Продолжительность электрообработки панелей составляла 70 мин. На протяжении этого времени зафиксирован рост температуры в центре изделий с 30°С до 45°С. По достижении этого значения электрическое воздействие было прекращено и оба ЖБИ после часового выдерживания распалубливания.

В ходе эксперимента выяснилось, что панели №1 и №2 сохраняют форму после снятия опалубки, однако визуальный осмотр выявил практически нулевую прочность арболита, поэтому снять изделия с поддона не представлялось возможным. Через сутки с большой осторожностью панели распилили на кубы 200х200 мм для проведения испытаний на сжатие.

Результаты испытаний

Испытания бетонных образцов, проведенные на 3, 7, 14, 28 и 90 сутки, показали, что в первые 7 суток при обработке постоянным током прочность арболита несколько выше, чем в случае обработки переменным током. Вероятно, этот эффект связан с удалением большего объема механически связанной влаги вследствие явления электроосмоса и процесса интенсификации кристаллизационного твердения цемента. Так как разница в показателях прочности составляет 4–5%, то обнаруженный эффект не имеет практического значения.

Ссылка на основную публикацию
"
×
×
"
Adblock
detector