""

Коэффициент пуассона для бетона

Коэффициент Пуассона

Коэффициент Пуассона (обозначается как или ) — абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала.

При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз поперечная деформация деформируемого тела больше продольной деформации, при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно несжимаемого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5.

Безразмерен, но может быть указан в относительных единицах: мм/мм, м/м.

Содержание

Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.

К примеру, бумага из однослойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения доли многослойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.

Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы [1] , так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0.54), натрий (−0.44), калий (−0.42), кальций (−0.27), медь (−0.13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.

— коэффициент Пуассона; — деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии); — продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

Коэффициент Пуассона для грунтов определяется по табл. 5.10 СП 22.13330.2011 Основания зданий и сооружений

при большей плотности грунта.

Значения коэффициента Пуассона для некоторых изотропных материалов

Примечания

  1. Гольдштейн Р. В., Городцов В. А., Лисовенко Д. С. Ауксетическая механика кристаллических материалов. Известия РАН, МТТ, 2010 г., № 4, стр.43-62.

Модуль объёмной упругости () | Модуль Юнга () | Параметры Ламе () | Модуль сдвига () | Коэффициент Пуассона () | en:P-wave modulus ()

Wikimedia Foundation . 2010 .

Смотреть что такое «Коэффициент Пуассона» в других словарях:

Коэффициент Пуассона — µ Коэффициент пропорциональности между абсолютными значениями относительной продольной ε1у и поперечной ε2y упругомгновенными деформациями при s1 = 0,3Rпр при осевом сжатии образца Источник: ГОСТ 24452 8 … Словарь-справочник терминов нормативно-технической документации

Коэффициент пуассона — – абсолютная величина отношения поперечного относительного укорочения (удлинения) к относительному продольному удлинению (укорочению) при простом растяжении (сжатии) прямого стержня в пределах применимости закона Гука. [ГОСТ 24452 80]… … Энциклопедия терминов, определений и пояснений строительных материалов

коэффициент Пуассона — µ Коэффициент пропорциональности между абсолютными значениями относительной продольной … Справочник технического переводчика

коэффициент Пуассона — [Poisson s ratio] упругая константа материала, равная отношению относительной поперечной деформации (ε2 и ε3) к относительной продольной деформации (ε1) при линейном растяжении или сжатии: μ = ε2/ε1 = ε3/ε1 = const. Коэффициент Пуассона разных… … Энциклопедический словарь по металлургии

коэффициент Пуассона — Puasono santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Tempiamo arba gniuždomo bandinio skersinės ir išilginės santykinių deformacijų dalmens absoliučioji vertė. atitikmenys: angl. Poisson number; Poisson’s ratio vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

коэффициент Пуассона — Puasono koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Tempiamų arba gniuždomų kūno sluoksnių skersinės ir išilginės deformacijų dalmens absoliučioji vertė. atitikmenys: angl. Poisson’s ratio vok. Poisson Konstante, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

коэффициент Пуассона — Puasono santykis statusas T sritis fizika atitikmenys: angl. Poisson number; Poisson’s ratio vok. Poisson Konstante, f; Poissonsche Konstante, f; Poissonsche Zahl, f rus. коэффициент поперечного сжатия, m; коэффициент Пуассона, m pranc.… … Fizikos terminų žodynas

Коэффициент Пуассона — Poisson s ratio Коэффициент Пуассона. Абсолютная величина отношения поперечной деформации к соответствующей продольной деформации, в условиях равномерно распределенного осевого напряжения ниже Proportional limit Предела пропорциональности… … Словарь металлургических терминов

коэффициент Пуассона — Puasono koeficientas statusas T sritis fizika atitikmenys: angl. Poisson’s ratio vok. Poisson Konstante, f; Poissonscher Koeffizient, m rus. коэффициент Пуассона, m pranc. coefficient de Poisson, m; rapport de Poisson, m … Fizikos terminų žodynas

КОЭФФИЦИЕНТ ПУАССОНА — отношение относительного бокового расширения образца испытуемого грунта к относительной вертикальной деформации его под действием нагрузки при одноосном сжатии. Определяется обычно по формуле где £ коэффициент бокового давления грунта … Словарь по гидрогеологии и инженерной геологии

Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и .

Бетон — Коэффициент Пуассона

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль упругости и коэффициент Пуассона) определяются путем испытаний специальных образцов, изготовленных из исследуемого материала. Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов (камня, цемента, бетона и т. д.) основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов. [c.33]

Обнаружено, что ползучесть усиливается при уменьшении вл ал приближается к своему предельному значению 0,5. С другой стороны, пробка—материал, для которого л практически равен нулю, в то время как для бетона примерна равен 0,1. [c.22]

Читать еще:  Марка бетона для фундамента частного дома

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль продольной упругости и коэффициент Пуассона) опреде ляются путем испытаний специальных образцов, изготовленных из исследуемого материала. Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов — камня, цемента, бетона и т. д.— основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов. Сведения об устройстве этих машин и методике испытаний, а также о применяемых при этом измерительных приборах приводятся в специальных руководствах. [c.31]

Бетонный цилиндр диаметром =20 см находится в абсолютно твердой плите и подвергается осевому сжатию силой Р=31,4 Т. Определить главные напряжения в цилиндре. Коэффициент Пуассона —0,2. [c.93]

Бетонный кубик (рис. 2.51) со зазоров вложен в гнездо стальной плиты Р = 250 кН (рис. 2.51). Определить напряжения, возникающие по граням кубика, считая плиту абсолютно жесткой. Коэффициент Пуассона (и = 0,15 [c.135]

Для твердых материалов — металлов, камня, бетона— коэффициент Пуассона составляет 1/4—1/3. [c.168]

Пусть двухслойное основание изготовлено из стареющих материалов, характеризуемых постоянством и равенством коэффициентов Пуассона упругомгновенной деформации и деформации ползучести (например, из разных марок бетона), и необходимо исследовать контактную задачу, описываемую интегральным уравнением (1.31) при дополнительных условиях (1.32), (1.33). Предположим, что конструкционная неоднородность проявляется только от слоя к слою, т.е. при изготовлении основания использованы только два стареющих материала. Тогда уравнение (1.31) примет вид [c.69]

Рассмотрим контактную задачу для основания, изготовленного из одного материала-бетона, и исследуем влияние неоднородного старения на контактные характеристики. Будем считать, что штамп плоский (p(i ) = 0), а вдавливающая сила P t) приложена в центре штампа, т.е. M t) = О (четный вариант задачи). Поскольку изменение модуля упругомгновенной деформации бетона Е в процессе старения несущественно, будем полагать его постоянным, а значения коэффициента Пуассона брать в пределах от 0.1 до 0.3 [16, 117]. Опуская звездочку в обозначениях, запишем основные безразмерные функции и параметры в виде (см. (3.4) и далее) [c.78]

Рассмотрим двухслойное основание (см. п.1.1), изготовленное из бетона с модулем упругомгновенной деформации Е, коэффициентом Пуассона и, мерой ползучести [c.168]

Найти давление на стенки обоймы и напряжения в бетоне. Коэффициент Пуассона для бетона [1 = 0,18. [c.138]

Железобетонные плиты. Пусть Eg—модуль Юнга для стали, Е . — для бетона, Чс — коэффициент Пуассона для бетоиа, п — Е /Ес- Исходя из упругих [c.407]

Бетонный кубик с ребром а=10 см сжимается на прессе силой Я=1000 кг. Вычислить напряжения в кубике и величины абсолютного упругого изменения длин его ребер, считая модуль упругости бетона =2-10 кГ1см , а коэффициент Пуассона при сжатии х=0,15. [c.11]

Пример 13.2. Длинная бетонная труба, имеющая внутренний диаметр = = 1 м, заложена на глубине Н — 35 м от поверхности воды. Считая давление воды равномерно распределенным по поверхности трубы, определить необходимую толщину ее стенок по второй теории прочности. Допускаемое напряжение для бетона на сжатие 15 kFJ m , коэффициент Пуассона ft = 0,16. [c.353]

При строительстве защитных оболочек АЭС могут применяться ЭП в виде цилиндрического блока из электротехнического фарфора или другого материала диаметром 60—80 см, забетонированного в конструкции. Оболочка с таким блоком также рассчитана в соответствии с положениями работы [17]. Исследовались максимальные напряжения в точках А, В, С (рис. 1.20) у сплошной проходки диаметром 60 см с различными значениями модуля упругости Е и коэффициента Пуассона v. Установлено, что изменение Е существенно влияет на напряжения а, и 00 только при небольших его значениях (рис. 1.20, б). Максимального значения напря-жение of достигает при =5-105 мПа, а изменение v практически не сказывается на значениях напряжений. Радиальные усилия в точке А интенсивно возрастают при увеличении от О до 60 000 МПа, при увеличении Е выше 300 000 МПа усилия в бетоне не меняются. [c.35]

Белый свет в поляризаторе 580 Беляева гипотеза строения 282 Бетон — Ксвффициент понижения допускаемого напряжения — Зависимость от гибкости 335 — Коэффициент Пуассона 20 [c.622]

При разгрузке и последующем дофужении сжатый бетон деформируется линейно с начальным модулем упругости и коэффициентом Пуассона, вплоть до достижения той точки на поверхности нагружения (пластичности), с которой началась разфузка. [c.82]

Бетонный кубик ЮОхЮОхЮОлж сжимается со всех сторон равными силами Р = 40 кн (- АТ). Определить главные напряжения, относительные деформации и изменение объема кубика после деформации. Модуль упругости бетона = 2-10 Мн/ж ( 2-10 кГ/ш ), коэффициент Пуассона [i = 0,2. Считать, что нааряженное состояние однородно. [c.70]

Объектом исследований являлась реальная конструкция, представляющая собой двухслойную плиту. Материал верхнего и нижнего слоев — бетон марки 350. Размеры плиты в плане — 700×700 см. Толщина верхнего слоя — 28 см, нижнего — 24 см. Между ними расположена обжимаемая прослойка толщиной 0,3 см, состоящая из нескольких слоев битуминизированной бумаги. Лабораторные испытания образцов материала слоев позволили определить следующие физико-механические характеристики для бетона — модуль упругости Е = = = 3,1 10″ МПа, коэффициент Пуассона i i = = 0,167 для битуминизированной бумаги — Е2 = 2 МПа, ту2 = 0,35. [c.209]

Расчеты выполним для двухслойных цементобетонных покрытий (характеристики несущих слоев модуль упругости бетона Е = 3,3 10 МПа, коэффициент Пуассона и = 0,15) с разделительной прослойкой различной жесткости (10, 10 , 10 , 10 , 10 и 10 МН/м ) на упругом основании (коэффициент постели основания С принимаем равным 20 и 150 МН/м ) под воздействием одноколесной нагрузки 100 кН с давлением в шине 1,25 МПа. Значения толщины цементобетонных слоев назначаем такими, чтобы суммарная жесткость несущих слоев D оставалась в пределах одного расчета постоянной и составляла для рассматриваемых вариантов 15,4 МН-м /м, 45,0 МН-м /м и 151,9 МН-м /м. Такие значения жесткостей несущих слоев охватывают практически весь возможный диапазон конструкций двухслойных покрытий. [c.254]

Читать еще:  Какой самый дешевый забор для дачи

Ползучесть некоторых распростралеьшых конструкционных материалов, в том числе бетона, хорошо описывается уравнениями состояния (1.28), (1.29) при условии независимости от возраста и равенства коэффициентов Пуассона упругомгновенной деформации и деформации ползучести [16,117], т.е. 1/1( — т (х),х) = l 2 t — т — (х),х) = 1 (х), тогда с учетом соотношений (1.16), (1.19), (1.20) [c.21]

Модуль упругости бетона Е = (0,146 -ь -0,27) 10 МПа и предел прочности на сжатие = 48 — 60 МПа на порядок меньше, чем у стали, поэтому одинаковой жесткости и прочности можно достичь увеличением толщины стенок. Однако более низкий удельный вес бетона (на треть меньший, чем у стали и чугуна) незначительно изменяет массу конструкции. При напряжениях сжатия, превышающих (0,3 — 0,5)Ос бетон течет, что приводит к изменению формы. Поэтому расчетные напряжения сжатия ограничивают значениями (0,25 — 0,30)а(.. Прочность при растяжении минимум на порядок ниже, чем при сжатии. Низкая теплопроводность делает бетон мало чувствительным к колебаниям температуры. Коэффициент температурного расширения а = 7 10 — 14 10 1/град и зависит от наполнителя. В среднем а = = 10 10 61/град, что близко к значениям а для чугуна. Значение коэффициента Пуассона для бетона д. = 0,167. Малая усадка бетона (коэффициент линейной усадки в среднем равен 0,03 %) обеспечивает сохранение формы и точность взаимного расположения заформованных металлических деталей при твердении. [c.385]

Решение. Пусть р означает продольное, г д — поперечное сжимакодее давле-ние, ф — внутренний диаметр и Л — толщина трубы, Е — модуль упругости стали, Сб. — модуль упругости и коэффициент Пуассона для бетона. Расширение бетона в поперечном направлении на основании уравнений (43) будет [c.66]

Смотреть страницы где упоминается термин Бетон — Коэффициент Пуассона : [c.132] [c.36] [c.82] [c.69] [c.102] [c.114] [c.182] [c.227] [c.622] Справочник машиностроителя Том 3 Изд.2 (1956) — [ c.22 ]

Справочник машиностроителя Том 3 Издание 2 (1955) — [ c.22 ]

Расчетные сопротивления и модули упругости
для строительных материалов

При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.

Таблица 1. Модули упругости для основных строительных материалов

Нормативные данные для рассчетов железобетонных конструкций

Таблица 2. Модули упругости бетона (согласно СП 52-101-2003)

Таблица 2.1 Модули упругости бетона согласно СНиП 2.03.01-84*(1996)

Примечания:
1. Над чертой указаны значения в МПа, под чертой — в кгс/см&sup2.
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент
a = 0,56 + 0,006В.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона сжатию (согласно СП 52-101-2003)

Таблица 4.1 Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 6.2 Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Таблица 7. Расчетные сопротивления для арматуры (согласно СП 52-101-2003)

Таблица 7.1 Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 7.2 Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Нормативные данные для расчетов металлических контрукций

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990)) листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см&sup2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

Примечания:
1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Читать еще:  Можно ли класть асфальт на бетон

Расчетные сопротивления для стали, используемой для производства профилированных листов здесь не показаны.

Коэффициент Пуассона

Коэффициент Пуассона (обозначается как ν или μ ) — величина отношения относительного поперечного сжатия к относительному продольному растяжению. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала [1] . Безразмерен, но может быть указан в относительных единицах: мм/мм, м/м.

Содержание

Детальное определение

Приложим к однородному стержню растягивающие его силы. В результате воздействия таких сил стержень в общем случае окажется деформирован как в продольном, так и в поперечном направлениях.

Пусть l и d длина и поперечный размер образца до деформации, а l ′ > и d ′ > — длина и поперечный размер образца после деформации. Тогда продольным удлинением называют величину, равную ( l ′ − l ) -l)> , а поперечным сжатием — величину, равную − ( d ′ − d ) -d)> . Если ( l ′ − l ) -l)> обозначить как Δ l , а ( d ′ − d ) -d)> как Δ d , то относительное продольное удлинение будет равно величине Δ l l >> , а относительное поперечное сжатие — величине − Δ d d >> . Тогда в принятых обозначениях коэффициент Пуассона μ имеет вид:

μ = − Δ d d l Δ l . >>.>

Обычно при приложении к стержню растягивающих усилий он удлиняется в продольном направлении и сокращается в поперечных направлениях. Таким образом, в подобных случаях выполнятся 0>»> Δ l l > 0 >>0> 0>»/> и Δ d d 0 > , так что коэффициент Пуассона положителен. Как показывает опыт, при сжатии коэффициент Пуассона имеет то же значение, что и при растяжении.

Для абсолютно хрупких материалов коэффициент Пуассона равен 0, для абсолютно несжимаемых — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он равен приблизительно 0,5.

Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.

К примеру, бумага из однослойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения доли многослойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.

Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы [2] , так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0,54), натрий (−0,44), калий (−0,42), кальций (−0,27), медь (−0,13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.

Коэффициент Пуассона

Коэффициент Пуассона (обозначается как ν или μ ) — величина отношения относительного поперечного сжатия к относительному продольному растяжению. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала [1] . Безразмерен, но может быть указан в относительных единицах: мм/мм, м/м.

Содержание

Детальное определение

Приложим к однородному стержню растягивающие его силы. В результате воздействия таких сил стержень в общем случае окажется деформирован как в продольном, так и в поперечном направлениях.

Пусть l и d длина и поперечный размер образца до деформации, а l ′ > и d ′ > — длина и поперечный размер образца после деформации. Тогда продольным удлинением называют величину, равную ( l ′ − l ) -l)> , а поперечным сжатием — величину, равную − ( d ′ − d ) -d)> . Если ( l ′ − l ) -l)> обозначить как Δ l , а ( d ′ − d ) -d)> как Δ d , то относительное продольное удлинение будет равно величине Δ l l >> , а относительное поперечное сжатие — величине − Δ d d >> . Тогда в принятых обозначениях коэффициент Пуассона μ имеет вид:

μ = − Δ d d l Δ l . >>.>

Обычно при приложении к стержню растягивающих усилий он удлиняется в продольном направлении и сокращается в поперечных направлениях. Таким образом, в подобных случаях выполнятся 0>»> Δ l l > 0 >>0> 0>»/> и Δ d d 0 > , так что коэффициент Пуассона положителен. Как показывает опыт, при сжатии коэффициент Пуассона имеет то же значение, что и при растяжении.

Для абсолютно хрупких материалов коэффициент Пуассона равен 0, [ источник не указан 22 дня ] для абсолютно несжимаемых — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он равен приблизительно 0,5.

Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.

К примеру, бумага из однослойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения доли многослойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.

Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы [2] , так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0,54), натрий (−0,44), калий (−0,42), кальций (−0,27), медь (−0,13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.

Ссылка на основную публикацию
"
×
×
"
Adblock
detector